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1 Multivariate path tracing rules:

e Matrices are untransposed when traveling the direction against the ar-
rows, and transposed when direction of the arrows. Stated another way,
when tracing, begin with an untransposed matrix, always go through a
double-headed arrow at which point matrices thereafter are transposed.

Traversing u resets this rule.

e When creating a new matrix (e.g., ), always define the untransposed
matrix in a way that it travels against the direction of the arrows, at
least at the beginning of the tracing (they might change direction later).
E.g., Q should be cov(Y},, T,) where we travel Y, to T}, because this is the
direction in which we would not transpose when tracing the first individual
component paths (e.g., §). To do it the other way would invite confusion.
Often but not always, this means that the untransposed matrices have

component matrices that are also untransposed.

e In drawing out expected 2-by-2 covariance matrices between two different
variables, always put the starting variable (the one with arrows pointing
to it) on the left (defines rows) and the ending variables (arrows coming

from it) on the top (defines columns).

e Great care is needed when putting matrices into the expected total var/covar
matrix. Try to have the untransposed matrices above the diagonal and
transposed ones below it. To do this, the variables must be placed in the

right order (e.g., Y’s come before [N]T’s in the case of ). However, it



will probably be impossible to order the variables in such a way that the

untransposed expectations are always above the diagonal.

Var/covar matrices between the same 2 variables are always symmetric.
On the other hand, covariance matrices between 2 different variables, such
that the variables on top (defining columns) are different than the 2 vari-
ables on the side (defining rows), are typically full, although there are
exceptions (e.g., g. between T, and NT,,, where there is no biological rea-
son for these to be different since the meiosis differentiating transmitted
vs. untransmitted occurs in the focal individuals’ [parent’s] gametes). The
reason these covariance matrices are asymmetric is because these 2-by-2
matrices are actually submatrices (the upper right 2-by-2) of larger 4-
by-4 symmetric var/covar matrices. E.g., the complete var/covar matrix
between Fy, Fy, [N]Ti, and [N]T» is a 4-by-4 matrix and is symmet-
ric. However, we define w to be the upper right 2-by-2 submatrix of this
complete var/covar matrix, and thus it is not symmetric (and w’ is the
lower left 2-by-2 submatrix of this complete var/covar matrix). We use
the terminology ”covariance matrices” to denote these asymmetric 2-by-2

matrices, and ”var/covar matrices” to denote symmetric matrices.

Because covariance matrices are asymmetric, we need a path tracing rule
to denote when they should be transposed and when they should not.
When moving in the direction of the variable on the left (defining rows) to
variables on the top (defining columns), the covariance matrix is untrans-
posed. When moving in the opposite direction, the covariance matrix is
transposed. To clarify these two situations in a path diagram, we place a
> in the middle of the curved covariance line with double-headed arrows.
The > points in the direction for which path coefficients should not be

transposed.

Path tracing across the p matrix also has a special rule in multivariate
settings. It is untransposed when going left to right (Y,, to Yj), but
transposed when going right to left (Y7 to Y,,). Note that p is full and
that the copath from Y71 ,,, (on left) to Yas ¢ (on right) is p12 and between
Y22,m and Y115 is pa1.

Note that there are now 2 g matrices: g; (”g trans,” which is asymmetric)

and g. (g cis,” which is symmetric). g; is the covariance between hap-
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lotypic PGS’s between spouses — e.g., cov(T,,Ty,). There are 4 of them
(92, 93, g4, g5 in our old nomenclature). g; is full because cov(T1 , T2,m)
doesn’t necessarily equal cov(Ts , T1,m). g is symmetric because meiosis
has mixed alleles of different parental origins together (or we’re using the
"transmitted” vs. 7untransmitted” with respect to the offspring, which is
a random mix of the two parents’ set of alleles), and so cannot be differ-
entiated by the sex of the parent from whence they came. There are 6 of

them — g1, g6, 97, g3, 99, g10 in our old nomenclature.

The 4; matrix is also also special. As with the other trans haplotypic
covariances, i; is transposed when going from M to P, and not trans-
posed when going from P to M. However, cov(LT},,T,,) # cov(T,, LT,,).
Therefore, we need two 4;’s, such that i;1 = cov(LT,,T,,) and iy =
cov(T),, LT,,), with their respective transposes being the flipped versions

of those covariances.

Matrices:

2.1 Full Matrices

Note: subscripts p, m, s, and d denote paternal, maternal, son, and daughter,

respectively. These are used to incorporate sex and generational effects in our

model. For example, wy represents the genetic nurture effect for females in the

offspring generation (i.e., ”"daughters”), whereas w,, represents that of females

in the paternal generation (”mothers”).

MCK: all of these have been checked

Ylm Y2m
1 (Y, to Yy,) = Yip |p1n a2
Yop | po1 22




Yi, Yo
M1l H21
H12 22

p (Y to V) = Yim
Y2m

1 should be full in order for the expected covariance matrix between mates,
as well as the expected covariance of the g; matrix, to agree with the observed
matrices that correspond to these, which may be asymmetric. It is true that,
once genes from male/female ancestors are mixed via meiosis, the within-person
(or cis) expectations of the off-diagonal elements of g (g.) are the same. Never-
theless, this symmetry isn’t true of g; and the expected phenotypic cov(Yy, Yi,)
between mates, and thus g must by full. Note that the paternal goes on the
left (defines rows) and maternal on the top (defines columns) of this matrix,

and thus p12 = pt1p2m (i-e., 1 is the paternal Y7 and 2 is the maternal Y3), and

H21 = HU2p,1m

Yl[p/m] Yz[p/m]
f (Fo to Yv[p/m]) = Flo f11 f12
Fo | f2n fa2
F10 F2o
I (Yip/m) to Fy) = Yip/m |[fun [z
}/2[1)/771] f12 f22

Note that this is full not because of sex of origin effects, but because the influ-
ence of parental trait Y7 on offspring trait Y5 (f12) isn’t necessarily the same as
the influence of parental trait Y5 on offspring trait Y7 (f21). However, because
we do need to account for parental and offspring sex effects there are four dif-
ferent full f matrices, one for each combination of parent/ offspring sex. For

example:
Yl m }/Qm

flmls f1m25‘|

f2mls f2m25

fsm (Fs to Ym) = Fls
FZS

models the effect of a mother’s phenotype on a son’s familial environment.



w@F o NT) = B [ en e ]
Fy w21 w22
K

w' (2(N]T to F)) = [NITv Jwn wm]
N]T> |wiz w2

Note that w is also a full matrix. When the path is traversed from F' to [N]T,

the coefficient is 2w, and when the path is traversed from [N]T to F, the coef-
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sw’. For more on w, see notes under its derivation below.

ficient is

g 2F to LINIT)) = I1 | 12
Fy q21 922

L F

¢ (2(L[N]T to F)) = LINITY |qi1 g
LINITy [qi12  q22

Note that g is also a full matrix. When the path is traversed from F to L[N|T,
the coefficient is %q, and when the path is traversed from L[N]T to F, the co-

efficient is %q’ . For more on ¢, see notes under its derivation below.

[N]T1,  [N]Tom
gt11 gt12 ]

gt21 gt22

g¢ (IN]T, to [N]T) = N1Tp
[N] T2p




[NIThp  [NITop

gi (IN|Tyn to [N]T,) = (NV]Tim
[N|Toy,

gt11 gt21

gt12 gt22

|

Note that in this matrix, the variable defining rows (e.g., T1, and T, is dif-

ferent than the variable defining columns (e.g., Ti,, and Tby,), and thus this

matrix is asymmetric: g 12 # gi,21; .8, cov(Thp, Tom) # cov(Tap, Tim).

LIN|Ty
he (LIN|T, to L[N|T,,) = LWNTwp | hen
L[N]T3p hi21

LIN|Ty,
1, (LIN]T,, to LINIT,) = LN Tim | hen
LIN|Tom | harz

L [N] Tom
ht12
hi22

L [N] T2p

ht21

hi22

As with g¢;, the variable defining rows (e.g., LT, and LT5, is different than

the variable defining columuns (e.g., LT, and LT5,,), and thus this matrix is
asymmetric: hy 19 # hy 21 €.g., cov(LThp, LToy,) # cov(LTop, LT1ym,).

[N]Tlm

its0 (LINIT, to [N]T3,) = LINITip | itons
L[N]Tzp | it 0m

LIN]Ty,,

it (N to LINIT,) = IV 1Thm | iton
[N]Tom, Tt.012




LIN|Tym  L[N|Tom

itor, (INTy to LINIT,) = T |ty itornz
[N]T2p it0L21 Z.15()1122
NIy, [N]T3,

i, (LN to [N]T,) = LINITim

o1l Ttop21
LIN|Tom

ZtOL12 ZtOLQQ

[NT1m,  [N]Tom
Te11 1c21 1

1c12 122

ic (L[N|Ty to [N]Ty,) = LN Tim

LIN|Tiw  L[N|Tom
lel1 Lc12 ]

1¢c21 122

i (IN]Tp to LIN|T)) = N1Tim
[N]T2m

Two important things to note: First, while m subscripts are used above, the
same matrix applies for the paternal PGS’s and i, is equal across parents. Sec-
ondly, despite being within-person, the terms on the matrix y-axis are different
from those on the x-axis. Thus, i. is a full matrix. In other words, cov(LTh,, Top)

# cov(Thp, LTs),) necessarily.

2.2 Symmetric Matrices

MCK: all of these have been checked

NTi, NTm,
ge (T, to NT, or Ty, to NT,,) = Lip | Jet1  Gei2
Tap | ge12 ge22

Note that this matrix is symmetric - i.e., gc 12 in element (1,2) = gc 21 = ge12
in element (2,1). This is because, within-person, there is no distinction between

the parental origins of alleles in NT and T'.



LNTy, LNTs,

he (LT, to LNT, or LTy, to LNT,,) = LT | henn he12 1

LT, hei2 heo2

Like g, this matrix is symmetric - i.e., gc 12 in element (1,2) = gc21 = ge12 In
element (2,1). This is because, within-person, there is no distinction between

the parental origins of alleles in NT and T

Tlm T2m
k T | k1 Rz
T2m k12 k22

k is entirely within-PGS and applies for both T" and NT. kqs is the covari-

ance between the observed haplotypes at time 0 (i.e., the covariance due to

pleiotropy).
LTy, Lis,,
j = LTy, | jun J12
LTy | ji2 J22

j is entirely within-PGS and applies for both LT and LNT. jio is the co-

variance between the latent haplotypes at time 0 (i.e., the covariance due to

pleiotropy).
Iy, Fy,
VFp — Flp VFp,ll VFp,lZ
Fop | VEpi2  Vrp22

This particular example shows the Vi matrix for a father, but it’s important to

note that there are also separate Vy matrices for mothers, sons, and daughters.



These will all be identical the one above, but with m, s, and d subscripts in

place of the p subscripts above.

€1p €2p
V., = € Vep11 Vep,12
€2p Vep,u Vep,22

As with Vp, this particular example shows the V. matrix for a father, but it’s
important to note that there are also separate V. matrices for mothers, sons,
and daughters. These will all be identical the one above, but with m, s, and d

subscripts in place of the p subscripts above.

2.3 Diagonal Matrices

MCK: all of these have been checked

[NITp,  [N]T3p
5y (Y, to [N]T,) = Y1 | oy 0O
Yo, 0 d22p
[N/Ti;,  [N]|Tom
Sm = (Y to [N]T,) = Yim | Ouim :
}/Qm 0 522m

LINITy,  L[N|Tp

a11p 0
0 a22p

ap = (Y, to LIN|T,) = Yir
Y2p




LIN|Tym  L[N|Tom

am = (Y, to [N]T},,) = Yim a11m 0

Yom

0 a22m

3 Expectations

3.1 Model 2 with Parental Effects

3.1.1 > 2 generations of AM

Q, =Y, to [N]T,
= 2apic + 20p9c + 6pk + %wp

Q, = [N]T, to Y,
= 2ilal, 4 29.6,, + k6, + L),

Q= Y5, to [N]T,,
= 2amic + 20mge + Omk + %wm

Q. = [N|T,, to Yy,

= 2iLal, + 29.6,, + kél, + 2w,
T, =Y, to LIN|T,

= 260l + 2aphe + apj + 2qp

I = LIN|T, to Y,
= 2i.8), + 2hcal, + ja), + 3,

I, =Y, to L[N]Tm
= 2amhe + 26mz/c +amj+ %Qm

I = LIN|T,, to Y,

10



= 2ic0p, + 2heal, + jal, + 3,

gt = [NIT}, to [N]Ty,
= Q1

9e = Geis (NT, to T, and T, to NT,,) or (NT,, to Tp,, and T), to NT,,)
ge = 9. = 3(9: + 9)

hy = LIN|T, to L[N|T,,
=Ipulm

he = heis (LNT, to LT, and LT, to LNT,) or (LNT,, to LT,, and LT, to
LNT,,) he =h., = %(ht + h)

7:tLo (L[N]Tp to [N]Tm)
ltro = F;NQm

ity (IN1Ty 0 LINIT,)
i;LO = Q;n:ulrp

itor ([N]T, to L[N]T;,)
= Qul'm

oL

i, (LINJT to [N]T,)
=Tp'Q

-/
Yoy

i = icis (L[N]T, to [N]T,) or (L[N]Tp, to [N]T},)

?:C = %(itLO + Z‘:fOL)

L= iy, (INVT, to LINIT,) or ([N)T,u to LINIT,,)
7,/0 = %(itOL + i{fLo)

MCK: I updated all the i’s above to make it more explicit exactly what each
one is. Thankfully, we won’t have to have the i;,, (etc.) terms in the actual

path diagram because they’re implied. Only the i, ones will be in there.

11



Vip = fspVYpf;p + fsmVmeém + fS;DVYpNVmeém + fsmVYmM/VYpfép
= Vrs

Vim = fapVyplay + famVym Fgm + fapVypttVym £ + famVyemi Vyp

= Vra

MCK: updated the above two formulas to include the correct transposition of f
matrices (the 2nd one wasn’t transposed before), given that they are full. T've

done the same for Vg formulas below.

wp = F,, to [N|T),
= fspr + fsmOm + fspVYp,uQm + fsmVYm,U/Qp

:ws

W, = Fpy to [Ny,
= fdpr + fdem + fdeYp,UQm + fdiYm,u/Qp

qp = Fp to L[N]T,
= fspr + fsmF’m + fspVYp,UFm + fsmVYm/J/Fp
= (s

Gm = Fy, to LIN|T,,
= fdprp + fdmrm + fdeYp,uFm + fdiYm/J'/Fp
=dqd

OnTs = Y5 to NT,

= 2059 + 2a5ic + asis,, + asly,, + 059t + 0sg; + ws

= 4059, + dasic + ws

MCK: this reduces to the final line be g; + g; = 2g. and similarly for i. Similar
reductions can be done throughout but it’s nice to show both steps for clarity.

Also, we need to note that 6 is not symmetric
OnTa =Yy to NT,

= 20age + 2agic + adit,o + adly,, +0dgr + 0ag; + wa
= 4049, + 4agic + wq

12



ths = Y; to T*
= 25sk + HNTs

9Td = Yd to T*
= 204k + OnT4g

OrnTs = Ys to LNT,
= 20,0y, + 2ashe + ashy + ashy + dsio,, + 05ty + s

HLNTd = Yd to LNT*
= 25di2 + 2agh. + aghs + adhg + 5ditOL + 5di;LO +4a

Orrs = Y5 to LT,
=2asj +0LNTs

GLTd = Yd to LT*

=2aqj +0NTd

Vyp = 2Q,6, + 2T 0, + dpw, + apqy, + Vip + Vo

Vym = 2Qm00, + 2T mal, + dmwh, + amdiy + VEm + Vem

=Wa

JVB: T added d,wj, + a,q,, (and the maternal equivalent to these two expecta-
tions) paths to the VY expectations above. We were missing these four paths
(those that go through w’ and ¢’) in the previous math. I’'ve made the change
throughout.

MCK: Jared, I think this is a place where not making the § and a inverses
explicit created confusion. Even though § = ¢’, it’s very helpful to include the
proper transpositions because it helps you and others see exactly which paths
are being traced. Adding the paths you have makes it correct but it’s still not
that illuminating how the paths are being traced (I don’t think). Below, I pro-
vide an alternative that to me makes it clearer, starting at Yp and tracing up
each individual path, first to [N]T}, then to L[N]T,, the to F}, then to ¢,. But

in general, I'd go through each equation and (a) make the first line be the most

13



verbose (don’t simplify yet), and then collapse terms/simplify after that; and
(b) make sure all transpositions are included and are correct.

ga’ +ga’ _;’_Vep

w w
Vvp =Vys = 0,0, + 0,0, + a, I + a,I') + Viy + 56; + 55;, + 50+ 50,

=26,8, + 20,1, + Vip + w6, + qa;, + Vep

https://www.overleaf.com/project /5{f8¢a9e98e578a48c817d14 Vy, = 20:kd., +
059104 + 0slto, af + asiy, 04 + ashyal, + ashial, + agit, , 0% + 05y, al + Ves + Vg

VYd = 25dk5:1 + 25d9c§:1 + Zadja;l + 2adhca;l + 2adic5(/1 + 25di'ca:1 + (deél + wd% +
adq(’i—&—qdafi—&-c;dgté(’i—i—édg;d&—|—5ditoLafi—i—adiQOLé(’j—l—adhtafi—i—adhgafi—i—aditwé(’i—i—
Odit, g+ Via + Ve

MCK: I added transposes to § and a terms above for consistency with multi-
variate path tracing rules (even though this doesn’t change the expectations bc

they’re diagonal).

Vion,, = 26,k0), + 46,9.0)

Vions . = 20mkdh, + 46,,9:6,,

Vara, = 2(1,,]'(12J + 4aphca;

VGratm = 2amjay, + 4amhear,

COVGObs,Lat,p = 45pilca;, + 4apic5;)

COVGObs,Lat,m = 46mi/ca;n + 4ami05;n

Ve, = 25pk6; + 4($ng5;, + 45pi’ca; + 2apja;, + 4aphca;? + 4apic5;,

VGiotm = 20mkd;, +40mged,, + 40miLan, + 2amjay, + 4anheay, + 4amicd),

14



COVGEP = §pw; + wp(S; + apq;7 + qpa;

COVepg,, = dmwh, + Wnoh, + amqh, + @mal,

MCK: The above equations are just repackaging of what comes above, but I
think it’s helpful to recast the above in chunks that are readily interpretable. It

also helps with checking the observed simulated data vs. the algebra.

3.1.2 After 1 Generation of AM

Q, =Y, to [N]T,
= dpk + Fw,

Q =Y, to [N]|T,,
= 0mk + %wm

T, =Y, to LNT,
= apj + %‘Ip

Iy, = Y, to L[N|T),

=amj+ %Qm

gt = [N]T}, to [N]T,
= Oy,

he = LIN]T, to L[N|T},
=Ipulm

ity = LIN|T, to [N]T,,
= Tpnsdn
= [N]T}, to LIN]Ty,

oL

15



= uly,

gc:hc:iczo

VFp = fspVYpf;p + fsmVmeém
VFm = fdeYpfcllp =+ fdimeg/lm
Vs = fspVYpfs/p + fsmVme;m + fspVYp/lVme;m + fsmVYm,Uf/VYpf;p

VFd = fdeYpf(/lp + fdimeC/lm + fdeYpuVme(lim + fdiYmU/VYpf!jp

wp, = F, to [N]T,
= fspr + fstm

Wy, = Fpy to [N T,
= fdpr + fdem

ws = Fy to [N]T%
= fspr + fstm + fspVYp,qum + fsmVYm,LL/Qp

wgq = Fy to [N]T*
= fdpr + fdem + fdeYp,uQm + fdiYmM/Qp

qp = Iy to LIN]T,
= fsprp +fsmrm

m = Fo to LIN|Tp,
= fdprp + fdmrm

qs = Fs to L[N}T*
= fspr + fsmFm + fspVYp,u'Fm + fsmVYm,U/Fp

qad = Fd to L[N]T*
= fdprp + fdmrm + fdeYpMFm + fdiYm/f"/Fp

16



Onts = Ys to NT.
= aSitLO + a’si;oL + 5$gt + 5392 + ws

= aditLo + a’di;OL + 6dgt + 6dg£ T Wa

0’1"5 - Ys tO T*
= 2(55k+9NTs

= 25dk + aNTd

Ornrs = Y5 to LNT.
= ashy + ash) + 05015, + 687;2140 +4s

= aqgh: + adhi + 6ditOL + 6di2LO +a

Orrs =Ys to LT,
= 2asj + O0LNTs

HLTd = Yd to LT*

= 2aqj + 0LNTd

Vyp = 29,0, + 2T pap, + dpwy, + apqy, + Vip + Ve
Vym = 2Qm0m + 20 + Smwl, + amdly, + Vem + Ve

Vs = 26,k6, + 2a, 0l + 8w, + w8, + asq + s, + 6,918, + 85 g}6, + bsirg, aly +
asi;oLéé + (lshta{g + ash;&a; + aSitLo(Sg + 65@':&00’; + VFS + Ves

Vira = 204k6) 4 2aajaly + 6 qwly+ w0y + aaqly+ qaaq + 049+ + 8490y + Saive, aly+
iy, O + aahiagy + aahiagy + adiv, o 6y + 0aiy, o ag + Via + Vea

17



3.1.3 No AM

Q, =Y, to [N]T,
= dpk + Fw,

Q= Yy, to [N]Tm
=0mk + %wm

I, =Y, to L[N]T,
=apj + %qz?

T, =Y, to LIN|T,,

gt =ht =it =15, =0

gc:hc:iczo

VFp = fspVYpfép + fsmVmeém
= VFS

VFm = fdeYpr,lp + fdimeg/lm
= Vpa

ws = wp = (Fs to [N]T, + Fs to [N]Ty) = fopSlp + fsmOm

Wq = Wy, = (Fd to [N]Tp+Fd to [N]Tm = fdpr+fdem

gy = F, to LIN]T,
= fspr + fsmFm
= (s

Gm = Fy, to LIN|T,,

18



= fdprp + fdmrm
=dqd

aNTs = Y; to ]\/v’I;<

:ws

HNTd = Yd to NT*

9T5 = Y; to T*
= 204k + OnTs

9Td = Y;/d to T*
= 204k + OnT4g

0LNT5 = Y:g/d to LNT*
:qs

OrnTa = Ys/d to LNT.

9LT5 = Ys/d to LT*
= 2asj +0rNTs

aLTd = }/s/d to LT*

= 2aqj + 0rLNTd

Vyp = 200, + 2T pay, + dpwy, + apqy, + Vip + Vo
Vym = 2Qm0m + 20t + 6w, + amdlhy + Vem + Vem
VYs = 5gw; + ws5s + asq; + qsQg + VFS + ‘/es

Vyg = 5dw& + wqdqg + adq(’j + qqaq + Vrag + Vea
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3.2 Model 1 with Parental Effects

3.2.1 > 2 generations of AM

Q, =Y, to [N]T,
= 20,9. + 6ok + %wp

QO = Yy, to [N]Tn

gt = [N]T), to [N]T},
= Q;UQm

VFp = fspVYpf;p + fsmVmeém + fSpVYpNVmeém + fsmVYm/«LIVYpfép
= VFs

Viem = fapVypfap + famVym Lo + fapVypttVym fim + FamVymtt' Vyp £l
= Vpa

wy, = F, to [N|T),
= fspr + fstm + fspVYp,Ume + fsmVYm,U/Qp

:wS

W, = Fp, to [N]Th,
= fdpr + fdem + fdeYp,uQm + fdiYm#/Qp

:wd

Onts =Ys to NT,
= 2059 + 059t + 059, + ws
OnTa =Yy to NT,
= 2049c + 0agt + 049y + wa

20



9T5 =Y, to T
= 263k + eNTs

aTd = Yd to T*
= 204k + OnT4

Vyp = QQp(Sp + 6pw;, + VFp + Vep
= VYs

= Wya

VYs = 5swg + ws(S; + (Ssgté; + 5sg£5é + VFS + ‘/;s

Vyq = 0qwly + wadly + 64910, + 0ag;0y; + Vra + Vea

3.2.2 After 1 Generation of AM

Q, =Y, to [N]T,
= 6pk + Fw,

Q= Yy to [N
=0k + %wm

gt = [N]T), to [N]T},
= Q/pI’LQ'ﬂL

gc:()

VFp = fSpVYpf;p + fsmVmegm

Vim = fapVyplay + famVym Fim
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VFs = fSpVYpf,;p + fsmVmeém + fspVYp/JfVme;m + fsmVYm,ulVYpf;p

Vra = fdeYpf(/lp + fdimeC/lm + fdeYp,UVmeg,lm + fdiYm,U/VYpfg,lp

wy, = F,, to [N]|T,
= fspr + fstm

Wy, = Fpp, to [N]T,,
= fdpr + fdem

ws = Fy to [N]T%
= fspr + fstm + fspVYp,qum + fsmVYm,U/Qp

wqg = Fy to [N]T*
= fdpr + famSQm + fdeYp,UQm + fdiYm,u/Qp

0NTS =Y, to NT,
= 6sgt + 6891’5 + ws

Onta = Yy to NT,
= 0agt + dag; + wq

9Ts =Y, to Tk
= 205k + OnTs

Orqg =Yy to T,
=204k + OnT4

VYp = ZQp(sp + 5}711);) + VFp + ‘/ep
VYs = 5Sw; + U)Ség + §sgt5:; + 58925; + VFS + ‘/ES

Vya = 0qwly + wadly + 64910y + 0ag;0y + Vra + Vea
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3.2.3 No AM

Q, =Y, to [N]T,
= dpk + Fw,

Q =Y, to [N|T,,

:(Smk—&—%wm
g:=0
gc:O

VFp = fspVYpf;p + fsmVme;m
= Vrs

Vim = fdeYpf(lip + fdime(/im
= VFra

ws = wp = Fy to [N]T, + F, to [N]|T,,
= fspr + fstm

Wq = Wy, = Fy to [N]T, + Fy to [N|T,,
= fdpr + fdem
MCK: All good above

Onts = Ys to NT

:’LUS

OnTa = Yy to NT,

9Ts =Y, to T
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= 255k + HNTS

Ora = Ys/d to T
= 204k + OnT4

VYp = 2Qp5p + 5pw;, + VFp + ‘/ep
Vys = (55111; + ws(sé + Vrs + Ve

Wyq = dqwly + wqdly + Vra + Vea
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3.3 Models 0 and 1 [OUTDATED MATH, DO NOT USE]

fdp * Iy + fam * Vym * it * Ty,
fdprp + fdiYm,u/Fp

Note: The text ”to” in the below shows the directionality of the untransposed
covariances— for asymmetric covariance matrices, they show which 2 variables
should be on the left (defining rows) ”to” which 2 variables should be on the
top (defining columns). Unfortunately, the use of a directional arrows in this
document would have caused confusion because it’s the opposite of a path dia-

gram arrow directionality.

[NIT:  [N]T»
QY to[NT)= Y1 | @ Qo
YZ QQl Q22

Q=0(k+g.) + 2w+ dg.
Q =0k + 269, + 2w
MCK: checked

Y; Y,
O (NTtoy)= INTi |Qn Qa2
[N]T> |2 Qoo

O = (k+ge)d + %w’ + g.0
Q' = k&' +2g.8 + 3w
MCK: checked

gt = Gtrans (Tp to Tm) =

25



[NIThp  [NTap

gg = gérans (Tm to TP) = [N}Tlm t.pp gt.mp ]

[N } T2m

9t,pm gt.mm

9p = L'y

MCK: checked

Note: it is crucial to use g; when traversing T}, to T,,, and to use g; when travers-
ing T}, to T,. This should only matter for finding covariances between mates

as most other g’s used in expectations are g..

9e = geis = 5(9¢ + 91)

MCK: I have checked (via simulation) that it’s actually the arithmetic mean we
need here and not the geometric mean (see comments in main.tex). This makes
g. off-diagonal elements be the same, and equal to the arithmetic mean of the

off-diagonal elements of g;.

Vy = 6(k+gc)d' +05w +0g:8"+ 2wd + Vi + 3wd +6(k+g.)0' + 01w +6gL0" + Ve
=200 +wd' +Vr +V,

Ve =2fW f' +2fVyuVy
=2fW(f +uWf’)
MCK: still needs to be checked

[N]Tlp [N]sz
wep (Fy to [N]T) = Frs | wan
Fy, w21 W2
w=2fQ + 2f Vo g/ Q)
w=2f(Q+ Vyu'Q)
D O
w' (INT to F) = WNITh fwin way
[N}T2 Wiz W22

w' =20 f + 20 uVy f!
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W' = 20/(f + Vi f')

MCK: Both w and w’ have been checked in mathematica and are correct, in-
cluding the p/ in the w equality. Therefore, when the path is traversed from F to
[N]T, the coefficient is 1w, and when the path is traversed from [N]T to F, the
coeflicient is %w’ . The asymmetry of w has nothing to do with parental origin
effects (f, vs. fr). Rather, it is intrisic to w: cov(Fy, [N]T2) # cov(Fs, [N]T1),
which is a consequence of f and p being full.

However, if we do have sex-specific parental f, one could trace F, to [N|T}, or
F, to [N]T,,, and these will be different. This would lead to two different w’s:
wy (to the father) and w,, (to the mother). Which w should be used within-
person? In this case, the paternally and maternally derived alleles are again
mixed (ala g.), and thus w = %(wp + wy,). Note that unlike g., however, this
equality should not be w = %(wp +w!,) - that would lead to a symmetric matrix
w which cannot be correct. Instead, we want the two off-diagonals of w to be
the geometric means of the two off-diagonals w,, and w,, respectively.

MCK: Both w and w’ need to be re-checked. I checked that the above (and it
worked) when tracing from F, to [N]T}, but not F, to [N]T,,. From looking at
it, these should differ according to our rules for u - it should be the same as
above but with p transposed when untransposed above, and vice-versa. I think
therefore that we actually have to separate w, from w,,, even when there are
no sex-specific effects of f, and if so, we’d need to find w (within-person g-e
covariance) as the geometric mean, as discussed above.

MCK: OK, both F, to [N]T, and F, to [N]T,, have been checked and they
are not the same things. Take the extreme example where male traits aren’t
heritable but female ones are, then F, to [N]T}, will be 0 but F, to [N]T, will
be > 0. So we need to have separate coefficients (we’ll call them w, and wy,
respectively) for each. And for the same reasons that g. is the arithmetic mean
of g: and g;, w (within-person, regardless of their sex) should be the arithmetic

!
mean of w, and w,, (not w;,).

OnT =Y, to NT

=2[fQ+ fVyuQ + 69" + 60 uQ)

=469+ w

(In our paper’s supplement, 67 = 46g + 2w, but I think this might be a mis-
take?)
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MCK: This is checked is correct. The paper supp is wrong

Or =Y toT

=2[6(k+g)+ fQ+ Q' uQ + fVyuQ)]
= 20k + 469 +w

= 20k + OnT

MCK: this is checked

Or — OnT = 20k
011k11 O11ka2
do2k12  O22k22
MCK: Note that I removed the r, that was originally in the off-diagonals of this

matrix - it’s undefined. I believe the above is the correct way. Unf I forgot to

save the old way you had it

3.4 Model 2

JVB: The changes I'm making below are largely for the purpose of incorporat-

ing/ differentiating trans and cis covariances, and the asymmetric mu matrix

Q=Y to [N]T
=ai+6(k+g)+iw+8g" +ai
= 0k + 2ai + 269 + w

JVB:
Q:aic+5(k+gc)+%w+5gc+aic
= 60k 4+ 26g. + 2ai. + %w

Q' = [N|T to Y
:i’a/+(k+g)5’+%w’g*é’—«—i/a’
= ko' + 2i'a’ + 298’ + Ju’

JVB:
Q= (k+g:)0+ 3w +ged +ila+ila
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ké + 2g.0 + 2iLa + su’

=Y to L[N|T
=a(j+h)+ 6’ + Jv+ 0 + ah*
= aj + 2ah + 207" + v

JVB:
I =a(j + he) + 01, + 2v + 8il, + ahe
= aj + 2ah. + 26il, + v

I'" = L[N|T to Y
= (j+ h)a' +i8' + v + i’ + h*a
2
= ja' + 2ha’ + 2i8' + 0’

h=LNT to LT
h=T'ul

g=NT toT
= Q' ufd

Vy = 2la’ 4 2Q0" + dw' + av' + Vp + Vi

w = F to [N]T
—2(fQ+ fVp)
w' =[N|T to F

= A f + UuVa )
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v =F to L[N|T
= 2(fT + fVipul)

v/ = L[N]T to F
(I 4 T f)

aNT =Y to NT
=2(3w + 8¢’ + ai + 8¢’ + ai)
=46g" + 4ai +w

O0r =Y toT
=2(3w+6(k+ g) + ai + 6g + ai)
= 26k + 469 + 4ai + w

= 26k + On

GLNT =Y to LNT
=2(3v + 6i' + ah’ + 6i' + ah’)
=461 + 4ah’ +v

0LT =Y to LT
=2(3v + &' + a(j + h) + 6i’ + ah)

= 2aj + 467" + 4dah +v
=2aj +0rnT

4 Expanded Matrices

4.1 Models 0 and 1

0— 25191 + 61k + 0.5w; 251912 + 01k12 + 0.5w19
252912 + dok1o + 0.5w9 25292 + doka + 0.5wo

= Qp (11 + p12Q01) + Qa1 (1221 + p2Q21)  Q12(u1Q1 + p12921) + Q2 (12921 + 12Q21)
Q1 (112 + p1292) + (1212 + 12922) Q21 Q12(1 Q12 + p12922) + Q2 (12212 + 12Q2)
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i VE| +VFy +26; (2(5191 + 61k1 + O.5’LU1) + 61w
Y p—
V E12 4+ VFia + 261(282912 + d2k12 + 0.5w21) + d1war
40191 + w1 401912 + w2
OnT =
462912 + w21 40292 + wo

40191 + 201k1 + wy

0 — 48112 + 261k12 + w12
T =
462912 + 202k19 + way

49290 + 202ko + wo

4.2 Model 2

25191 + 2a1i1 + 51]€1 + 05’(01
202912 + 2a2i12 + d2k12 + 0.5wa

Q

r— 2a1h1 + 251i1 + a1j1 + 0.5’01
2a2h12 + 202112 + azji2 + 0.5v9;

45191 + 4a1i1 + w1

401912 + 4ariie + wisg
NT = )
402912 + 4aziiz + wor

4(5292 + 40,21'2 —+ wa

%[Mﬁ+mm+%&+m
402912 + 4agiiz + 202k12 + wa1
4arhy + 46141 + vg
daghiz + 462112 + v21

daihia + 401412 + vi2

0 -
LT [ 4a2h2 —+ 452i2 —+ U2

da1hy + 40141 + 2a1j1 + 01
LT =
4a23h12 + 402112 + 2a2512 + Va1
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401912 + 4ariie + 201k12 + w12
45292 + 4(12i2 + 262k2 —+ wao

4arhia + 461112 + 2a1512 + V12
4(12}12 + 452i2 + 2a2j2 —+ Vo

VE3 + VFi2 4 202(201912 + 01k12 + 0.5w12) +
VEy,+ VE; + 252(25292 + d2ko + 0511]2) + 6

251912 + 2a1i12 + 01k12 + 0.5w1o
2(5292 + 2a2i2 + 62k2 + 05’11}2

2a1h12 + 201412 + a1j12 + 0.5v12
2a2h2 + 252i2 + a2j2 + 0.51)2




