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1 Multivariate path tracing rules:

• Matrices are untransposed when traveling the direction against the ar-

rows, and transposed when direction of the arrows. Stated another way,

when tracing, begin with an untransposed matrix, always go through a

double-headed arrow at which point matrices thereafter are transposed.

Traversing µ resets this rule.

• When creating a new matrix (e.g., Ω), always define the untransposed

matrix in a way that it travels against the direction of the arrows, at

least at the beginning of the tracing (they might change direction later).

E.g., Ω should be cov(Yp, Tp) where we travel Yp to Tp because this is the

direction in which we would not transpose when tracing the first individual

component paths (e.g., δ). To do it the other way would invite confusion.

Often but not always, this means that the untransposed matrices have

component matrices that are also untransposed.

• In drawing out expected 2-by-2 covariance matrices between two different

variables, always put the starting variable (the one with arrows pointing

to it) on the left (defines rows) and the ending variables (arrows coming

from it) on the top (defines columns).

• Great care is needed when putting matrices into the expected total var/covar

matrix. Try to have the untransposed matrices above the diagonal and

transposed ones below it. To do this, the variables must be placed in the

right order (e.g., Y ’s come before [N ]T ’s in the case of Ω). However, it
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will probably be impossible to order the variables in such a way that the

untransposed expectations are always above the diagonal.

• Var/covar matrices between the same 2 variables are always symmetric.

On the other hand, covariance matrices between 2 different variables, such

that the variables on top (defining columns) are different than the 2 vari-

ables on the side (defining rows), are typically full, although there are

exceptions (e.g., gc between Tp and NTp, where there is no biological rea-

son for these to be different since the meiosis differentiating transmitted

vs. untransmitted occurs in the focal individuals’ [parent’s] gametes). The

reason these covariance matrices are asymmetric is because these 2-by-2

matrices are actually submatrices (the upper right 2-by-2) of larger 4-

by-4 symmetric var/covar matrices. E.g., the complete var/covar matrix

between F1, F2, [N ]T1, and [N ]T2 is a 4-by-4 matrix and is symmet-

ric. However, we define w to be the upper right 2-by-2 submatrix of this

complete var/covar matrix, and thus it is not symmetric (and w′ is the

lower left 2-by-2 submatrix of this complete var/covar matrix). We use

the terminology ”covariance matrices” to denote these asymmetric 2-by-2

matrices, and ”var/covar matrices” to denote symmetric matrices.

• Because covariance matrices are asymmetric, we need a path tracing rule

to denote when they should be transposed and when they should not.

When moving in the direction of the variable on the left (defining rows) to

variables on the top (defining columns), the covariance matrix is untrans-

posed. When moving in the opposite direction, the covariance matrix is

transposed. To clarify these two situations in a path diagram, we place a

. in the middle of the curved covariance line with double-headed arrows.

The . points in the direction for which path coefficients should not be

transposed.

• Path tracing across the µ matrix also has a special rule in multivariate

settings. It is untransposed when going left to right (Ym to Yf ), but

transposed when going right to left (Yf to Ym). Note that µ is full and

that the copath from Y11,m (on left) to Y22,f (on right) is µ12 and between

Y22,m and Y11,f is µ21.

• Note that there are now 2 g matrices: gt (”g trans,” which is asymmetric)

and gc (”g cis,” which is symmetric). gt is the covariance between hap-
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lotypic PGS’s between spouses – e.g., cov(Tp, Tm). There are 4 of them

(g2, g3, g4, g5 in our old nomenclature). gt is full because cov(T1,p, T2,m)

doesn’t necessarily equal cov(T2,p, T1,m). gc is symmetric because meiosis

has mixed alleles of different parental origins together (or we’re using the

”transmitted” vs. ”untransmitted” with respect to the offspring, which is

a random mix of the two parents’ set of alleles), and so cannot be differ-

entiated by the sex of the parent from whence they came. There are 6 of

them – g1, g6, g7, g8, g9, g10 in our old nomenclature.

• The it matrix is also also special. As with the other trans haplotypic

covariances, it is transposed when going from M to P , and not trans-

posed when going from P to M . However, cov(LTp, Tm) 6= cov(Tp, LTm).

Therefore, we need two it’s, such that it1 = cov(LTp, Tm) and it2 =

cov(Tp, LTm), with their respective transposes being the flipped versions

of those covariances.

2 Matrices:

2.1 Full Matrices

Note: subscripts p, m, s, and d denote paternal, maternal, son, and daughter,

respectively. These are used to incorporate sex and generational effects in our

model. For example, wd represents the genetic nurture effect for females in the

offspring generation (i.e., ”daughters”), whereas wm represents that of females

in the paternal generation (”mothers”).

MCK: all of these have been checked

µ (Yp to Ym) =

Y1m Y2m[ ]
Y1p µ11 µ12

Y2p µ21 µ22
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µ′ (Ym to Yp) =

Y1p Y2p[ ]
Y1m µ11 µ21

Y2m µ12 µ22

µ should be full in order for the expected covariance matrix between mates,

as well as the expected covariance of the gt matrix, to agree with the observed

matrices that correspond to these, which may be asymmetric. It is true that,

once genes from male/female ancestors are mixed via meiosis, the within-person

(or cis) expectations of the off-diagonal elements of g (gc) are the same. Never-

theless, this symmetry isn’t true of gt and the expected phenotypic cov(Yp, Ym)

between mates, and thus µ must by full. Note that the paternal goes on the

left (defines rows) and maternal on the top (defines columns) of this matrix,

and thus µ12 = µ1p,2m (i.e., 1 is the paternal Y1 and 2 is the maternal Y2), and

µ21 = µ2p,1m

—————————

f (Fo to Y[p/m]) =

Y1[p/m] Y2[p/m][ ]
F1o f11 f12

F2o f21 f22

f ′ (Y[p/m] to Fo) =

F1o F2o[ ]
Y1[p/m] f11 f21

Y2[p/m] f12 f22

Note that this is full not because of sex of origin effects, but because the influ-

ence of parental trait Y1 on offspring trait Y2 (f12) isn’t necessarily the same as

the influence of parental trait Y2 on offspring trait Y1 (f21). However, because

we do need to account for parental and offspring sex effects there are four dif-

ferent full f matrices, one for each combination of parent/ offspring sex. For

example:

fsm (Fs to Ym) =

Y1m Y2m[ ]
F1s f1m1s f1m2s

F2s f2m1s f2m2s

models the effect of a mother’s phenotype on a son’s familial environment.

4



—————————

w (2(F to [N ]T )) =

[N ]T1 [N ]T2[ ]
F1 w11 w12

F2 w21 w22

w′ (2([N ]T to F )) =

F1 F2[ ]
[N ]T1 w11 w21

[N ]T2 w12 w22

Note that w is also a full matrix. When the path is traversed from F to [N ]T ,

the coefficient is 1
2w, and when the path is traversed from [N ]T to F , the coef-

ficient is 1
2w
′. For more on w, see notes under its derivation below.

—————————

q (2(F to L[N ]T )) =

L[N ]T1 L[N ]T2[ ]
F1 q11 q12

F2 q21 q22

q′ (2(L[N ]T to F )) =

F1 F2[ ]
L[N ]T1 q11 q21

L[N ]T2 q12 q22

Note that q is also a full matrix. When the path is traversed from F to L[N ]T ,

the coefficient is 1
2q, and when the path is traversed from L[N ]T to F , the co-

efficient is 1
2q
′. For more on q, see notes under its derivation below.

—————————

gt ([N ]Tp to [N ]Tm) =

[N ]T1m [N ]T2m[ ]
[N ]T1p gt11 gt12

[N ]T2p gt21 gt22
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g′t ([N ]Tm to [N ]Tp) =

[N ]T1p [N ]T2p[ ]
[N ]T1m gt11 gt21

[N ]T2m gt12 gt22

Note that in this matrix, the variable defining rows (e.g., T1p and T2p is dif-

ferent than the variable defining columns (e.g., T1m and T2m), and thus this

matrix is asymmetric: gt,12 6= gt,21; e.g., cov(T1p, T2m) 6= cov(T2p, T1m).

—————————

ht (L[N ]Tp to L[N ]Tm) =

L[N ]T1m L[N ]T2m[ ]
L[N ]T1p ht11 ht12

L[N ]T2p ht21 ht22

h′t (L[N ]Tm to L[N ]Tp) =

L[N ]T1p L[N ]T2p[ ]
L[N ]T1m ht11 ht21

L[N ]T2m ht12 ht22

As with gt, the variable defining rows (e.g., LT1p and LT2p is different than

the variable defining columns (e.g., LT1m and LT2m), and thus this matrix is

asymmetric: ht,12 6= ht,21; e.g., cov(LT1p, LT2m) 6= cov(LT2p, LT1m).

—————————

itLO
(L[N ]Tp to [N ]Tm) =

[N ]T1m [N ]T2m[ ]
L[N ]T1p itLO11 itLO12

L[N ]T2p itLO21 itLO22

i′tLO
([N ]Tm to L[N ]Tp) =

L[N ]T1p L[N ]T2p[ ]
[N ]T1m itLO11 itLO21

[N ]T2m itLO12 itLO22

—————————
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itOL
([N ]Tp to L[N ]Tm) =

L[N ]T1m L[N ]T2m[ ]
[N ]T1p itOL11 itOL12

[N ]T2p itOL21 itOL22

i′tOL
(L[N ]Tm to [N ]Tp) =

[N ]T1p [N ]T2p[ ]
L[N ]T1m itOL11 itOL21

L[N ]T2m itOL12 itOL22

—————————

ic (L[N ]Tm to [N ]Tm) =

[N ]T1m [N ]T2m[ ]
L[N ]T1m ic11 ic21

L[N ]T2m ic12 ic22

i′c ([N ]Tm to L[N ]Tm) =

L[N ]T1m L[N ]T2m[ ]
[N ]T1m ic11 ic12

[N ]T2m ic21 ic22

Two important things to note: First, while m subscripts are used above, the

same matrix applies for the paternal PGS’s and ic is equal across parents. Sec-

ondly, despite being within-person, the terms on the matrix y-axis are different

from those on the x-axis. Thus, ic is a full matrix. In other words, cov(LT1p, T2p)

6= cov(T1p, LT2p) necessarily.

—————————

2.2 Symmetric Matrices

MCK: all of these have been checked

gc (Tp to NTp or Tm to NTm) =

NT1p NT2m[ ]
T1p gc11 gc12

T2p gc12 gc22

Note that this matrix is symmetric - i.e., gc,12 in element (1,2) = gc,21 = gc,12

in element (2,1). This is because, within-person, there is no distinction between

the parental origins of alleles in NT and T .
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—————————

hc (LTp to LNTp or LTm to LNTm) =

LNT1m LNT2m[ ]
LT1p hc11 hc12

LT2p hc12 hc22

Like gc, this matrix is symmetric - i.e., gc,12 in element (1,2) = gc,21 = gc,12 in

element (2,1). This is because, within-person, there is no distinction between

the parental origins of alleles in NT and T .

—————————

k =

T1m T2m[ ]
T1m k11 k12

T2m k12 k22

k is entirely within-PGS and applies for both T and NT . k12 is the covari-

ance between the observed haplotypes at time 0 (i.e., the covariance due to

pleiotropy).

—————————

j =

LT1m LT2m[ ]
LT1m j11 j12

LT2m j12 j22

j is entirely within-PGS and applies for both LT and LNT . j12 is the co-

variance between the latent haplotypes at time 0 (i.e., the covariance due to

pleiotropy).

—————————

VFp =

F1p F2p[ ]
F1p VFp,11 VFp,12

F2p VFp,12 VFp,22

This particular example shows the VF matrix for a father, but it’s important to

note that there are also separate VF matrices for mothers, sons, and daughters.
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These will all be identical the one above, but with m, s, and d subscripts in

place of the p subscripts above.

—————————

Vεp =

ε1p ε2p[ ]
ε1p Vεp,11 Vεp,12

ε2p Vεp,12 Vεp,22

As with VF , this particular example shows the Vε matrix for a father, but it’s

important to note that there are also separate Vε matrices for mothers, sons,

and daughters. These will all be identical the one above, but with m, s, and d

subscripts in place of the p subscripts above.

—————————

2.3 Diagonal Matrices

MCK: all of these have been checked

δp (Yp to [N ]Tp) =

[N ]T1p [N ]T2p[ ]
Y1p δ11p 0

Y2p 0 δ22p

δm = (Ym to [N ]Tm) =

[N ]T1m [N ]T2m[ ]
Y1m δ11m 0

Y2m 0 δ22m

—————————

ap = (Yp to L[N ]Tp) =

L[N ]T1p L[N ]T2p[ ]
Y1p a11p 0

Y2p 0 a22p
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am = (Ym to [N ]Tm) =

L[N ]T1m L[N ]T2m[ ]
Y1m a11m 0

Y2m 0 a22m

—————————

3 Expectations

3.1 Model 2 with Parental Effects

3.1.1 ≥ 2 generations of AM

—————————

Ωp = Yp to [N ]Tp

= 2apic + 2δpgc + δpk + 1
2wp

————

Ω′p = [N ]Tp to Yp

= 2i′ca
′
p + 2gcδ

′
p + kδ′p + 1

2w
′
p

————

Ωm = Ym to [N ]Tm

= 2amic + 2δmgc + δmk + 1
2wm

—————————

Ω′m = [N ]Tm to Ym

= 2i′ca
′
m + 2gcδ

′
m + kδ′m + 1

2w
′
m

————

Γp = Yp to L[N ]Tp

= 2δpi
′
c + 2aphc + apj + 1

2qp

————

Γ′p = L[N ]Tp to Yp

= 2icδ
′
p + 2hca

′
p + ja′p + 1

2q
′
p

————

Γm = Ym to L[N ]Tm

= 2amhc + 2δmi
′
c + amj + 1

2qm

—————————

Γ′m = L[N ]Tm to Ym
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= 2icδm + 2hca
′
m + ja′m + 1

2q
′
m

————

gt = [N ]Tp to [N ]Tm

= Ω′pµΩm

—————————

gc = gcis (NTp to Tp and Tp to NTp) or (NTm to Tm and Tm to NTm)

gc = g′c = 1
2 (gt + g′t)

—————————

ht = L[N ]Tp to L[N ]Tm

= Γ′pµΓm

—————————

hc = hcis (LNTp to LTp and LTp to LNTp) or (LNTm to LTm and LTm to

LNTm) hc = h′c = 1
2 (ht + h′t)

—————————

itLO
(L[N ]Tp to [N ]Tm)

itLO
= Γ′pµΩm

————

i′tLO
([N ]Tm to L[N ]Tp)

i′tLO
= Ω′mµ

′Γp

————

itOL
([N ]Tp to L[N ]Tm)

itOL
= Ω′pµΓm

—————————

i′tOL
(L[N ]Tm to [N ]Tp)

i′tOL
= Γ′mµ

′Ωp

—————————

ic = icis (L[N ]Tp to [N ]Tp) or (L[N ]Tm to [N ]Tm)

ic = 1
2 (itLO

+ i′tOL
)

—————————

i′c = i′cis ([N ]Tp to L[N ]Tp) or ([N ]Tm to L[N ]Tm)

i′c = 1
2 (itOL

+ i′tLO
)

—————————

MCK: I updated all the i’s above to make it more explicit exactly what each

one is. Thankfully, we won’t have to have the itLO
(etc.) terms in the actual

path diagram because they’re implied. Only the ic ones will be in there.
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VFp = fspVY pf
′
sp + fsmVYmf

′
sm + fspVY pµVYmf

′
sm + fsmVYmµ

′VY pf
′
sp

= VFs

————

VFm = fdpVY pf
′
dp + fdmVYmf

′
dm + fdpVY pµVYmf

′
dm + fdmVYmµ

′VY pf
′
dp

= VFd

MCK: updated the above two formulas to include the correct transposition of f

matrices (the 2nd one wasn’t transposed before), given that they are full. I’ve

done the same for VF formulas below.

—————————

wp = Fp to [N ]Tp

= fspΩp + fsmΩm + fspVY pµΩm + fsmVYmµ
′Ωp

= ws

————

wm = Fm to [N ]Tm

= fdpΩp + fdmΩm + fdpVY pµΩm + fdmVYmµ
′Ωp

= wd

—————————

qp = Fp to L[N ]Tp

= fspΓp + fsmΓm + fspVY pµΓm + fsmVYmµ
′Γp

= qs

————

qm = Fm to L[N ]Tm

= fdpΓp + fdmΓm + fdpVY pµΓm + fdmVYmµ
′Γp

= qd

—————————

θNTs = Ys to NT∗

= 2δsgc + 2asic + asitLO
+ asi

′
tOL

+ δsgt + δsg
′
t + ws

= 4δsgc + 4asic + ws

MCK: this reduces to the final line bc gt + g′t = 2gc and similarly for i. Similar

reductions can be done throughout but it’s nice to show both steps for clarity.

Also, we need to note that θ is not symmetric

θNTd = Yd to NT∗

= 2δdgc + 2adic + aditLO
+ adi

′
tOL

+ δdgt + δdg
′
t + wd

= 4δdgc + 4adic + wd
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—————————

θTs = Ys to T∗

= 2δsk + θNTs

θTd = Yd to T∗

= 2δdk + θNTd

—————————

θLNTs = Ys to LNT∗

= 2δsi
′
c + 2ashc + asht + ash

′
t + δsitOL

+ δsi
′
tLO

+ qs

θLNTd = Yd to LNT∗

= 2δdi
′
c + 2adhc + adht + adh

′
t + δditOL

+ δdi
′
tLO

+ qd

—————————

θLTs = Ys to LT∗

= 2asj + θLNTs

θLTd = Yd to LT∗

= 2adj + θLNTd

—————————

VY p = 2Ωpδp + 2Γpap + δpw
′
p + apq

′
p + VFp + Vεp

————

VYm = 2Ωmδ
′
m + 2Γma

′
m + δmw

′
m + amq

′
m + VFm + Vεm

= VY d

JVB: I added δpw
′
p + apq

′
p (and the maternal equivalent to these two expecta-

tions) paths to the VY expectations above. We were missing these four paths

(those that go through w’ and q’) in the previous math. I’ve made the change

throughout.

MCK: Jared, I think this is a place where not making the δ and a inverses

explicit created confusion. Even though δ = δ′, it’s very helpful to include the

proper transpositions because it helps you and others see exactly which paths

are being traced. Adding the paths you have makes it correct but it’s still not

that illuminating how the paths are being traced (I don’t think). Below, I pro-

vide an alternative that to me makes it clearer, starting at Y p and tracing up

each individual path, first to [N ]Tp, then to L[N ]Tp, the to Fp, then to εp. But

in general, I’d go through each equation and (a) make the first line be the most
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verbose (don’t simplify yet), and then collapse terms/simplify after that; and

(b) make sure all transpositions are included and are correct.

VY p =VY s = δpΩ
′
p + δpΩ

′
p + apΓ

′
p + apΓ

′
p + VFp +

w

2
δ′p +

w

2
δ′p +

q

2
a′p +

q

2
a′p + Vεp

=2δpΩ
′
p + 2apΓ

′
p + VFp + wδ′p + qa′p + Vεp

————

https://www.overleaf.com/project/5ff8ea9e98e578a48c817d14 VY s = 2δskδ
′
s +

2δsgcδ
′
s+2asja

′
s+2ashca

′
s+2asicδ

′
s+2δsi

′
ca
′
s+δsw

′
s+wsδ

′
s+asq

′
s+qsa

′
s+δsgtδ

′
s+

δsg
′
tδ
′
s + δsitOL

a′s + asi
′
tOL

δ′s + ashta
′
s + ash

′
ta
′
s + asitLO

δ′s + δsi
′
tLO

a′s +VFs +Vεs

————

VY d = 2δdkδ
′
d+ 2δdgcδ

′
d+ 2adja

′
d+ 2adhca

′
d+ 2adicδ

′
d+ 2δdi

′
ca
′
d+ δdw

′
d+wdδ

′
d+

adq
′
d+qda

′
d+δdgtδ

′
d+δdg

′
tδ
′
d+δditOL

a′d+adi
′
tOL

δ′d+adhta
′
d+adh

′
ta
′
d+aditLO

δ′d+

δdi
′
tLO

a′d + VFd + Vεd

—————————

MCK: I added transposes to δ and a terms above for consistency with multi-

variate path tracing rules (even though this doesn’t change the expectations bc

they’re diagonal).

VGObs,p
= 2δpkδ

′
p + 4δpgcδ

′
p

—————————

VGObs,m
= 2δmkδ

′
m + 4δmgcδ

′
m

—————————

VGLat,p
= 2apja

′
p + 4aphca

′
p

—————————

VGLat,m
= 2amja

′
m + 4amhca

′
m

—————————

COVGObs,Lat,p
= 4δpi

′
ca
′
p + 4apicδ

′
p

—————————

COVGObs,Lat,m
= 4δmi

′
ca
′
m + 4amicδ

′
m

—————————

VGtot,p = 2δpkδ
′
p + 4δpgcδ

′
p + 4δpi

′
ca
′
p + 2apja

′
p + 4aphca

′
p + 4apicδ

′
p

—————————

VGtot,m
= 2δmkδ

′
m + 4δmgcδ

′
m + 4δmi

′
ca
′
m + 2amja

′
m + 4amhca

′
m + 4amicδ

′
m

—————————
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COVGEp = δpw
′
p + wpδ

′
p + apq

′
p + qpa

′
p

—————————

COVGEm
= δmw

′
m + wmδ

′
m + amq

′
m + qma

′
m

—————————

MCK: The above equations are just repackaging of what comes above, but I

think it’s helpful to recast the above in chunks that are readily interpretable. It

also helps with checking the observed simulated data vs. the algebra.

3.1.2 After 1 Generation of AM

—————————

Ωp = Yp to [N ]Tp

= δpk + 1
2wp

————

Ωm = Ym to [N ]Tm

= δmk + 1
2wm

—————————

Γp = Yp to L[N ]Tp

= apj + 1
2qp

————

Γm = Ym to L[N ]Tm

= amj + 1
2qm

—————————

gt = [N ]Tp to [N ]Tm

= Ω′pµΩm

—————————

ht = L[N ]Tp to L[N ]Tm

= Γ′pµΓm

—————————

itLO
= L[N ]Tp to [N ]Tm

= Γ′pµΩm

————

itOL
= [N ]Tp to L[N ]Tm
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= Ω′pµΓm

—————————

gc = hc = ic = 0

—————————

VFp = fspVY pf
′
sp + fsmVYmf

′
sm

————

VFm = fdpVY pf
′
dp + fdmVYmf

′
dm

————

VFs = fspVY pf
′
sp + fsmVYmf

′
sm + fspVY pµVYmf

′
sm + fsmVYmµ

′VY pf
′
sp

————

VFd = fdpVY pf
′
dp + fdmVYmf

′
dm + fdpVY pµVYmf

′
dm + fdmVYmµ

′VY pf
′
dp

—————————

wp = Fp to [N ]Tp

= fspΩp + fsmΩm

————

wm = Fm to [N ]Tm

= fdpΩp + fdmΩm

————

ws = Fs to [N ]T∗

= fspΩp + fsmΩm + fspVY pµΩm + fsmVYmµ
′Ωp

————

wd = Fd to [N ]T∗

= fdpΩp + fdmΩm + fdpVY pµΩm + fdmVYmµ
′Ωp

—————————

qp = Fp to L[N ]Tp

= fspΓp + fsmΓm

————

qm = Fm to L[N ]Tm

= fdpΓp + fdmΓm

————

qs = Fs to L[N ]T∗

= fspΓp + fsmΓm + fspVY pµΓm + fsmVYmµ
′Γp

————

qd = Fd to L[N ]T∗

= fdpΓp + fdmΓm + fdpVY pµΓm + fdmVYmµ
′Γp

16



—————————

θNTs = Ys to NT∗

= asitLO
+ asi

′
tOL

+ δsgt + δsg
′
t + ws

θNTd = Yd to NT∗

= aditLO
+ adi

′
tOL

+ δdgt + δdg
′
t + wd

—————————

θTs = Ys to T∗

= 2δsk + θNTs

θTd = Yd to T∗

= 2δdk + θNTd

—————————

θLNTs = Ys to LNT∗

= asht + ash
′
t + δsitOL

+ δsi
′
tLO

+ qs

θLNTd = Yd to LNT∗

= adht + adh
′
t + δditOL

+ δdi
′
tLO

+ qd

—————————

θLTs = Ys to LT∗

= 2asj + θLNTs

θLTd = Yd to LT∗

= 2adj + θLNTd

—————————

VY p = 2Ωpδp + 2Γpap + δpw
′
p + apq

′
p + VFp + Vεp

————

VYm = 2Ωmδm + 2Γmam + δmw
′
m + amq

′
m + VFm + Vεm

————

VY s = 2δskδ
′
s+ 2asja

′
s+ δsw

′
s+wsδ

′
s+asq

′
s+ qsa

′
s+ δsgtδ

′
s+ δsg

′
tδ
′
s+ δsitOL

a′s+

asi
′
tOL

δ′s + ashta
′
s + ash

′
ta
′
s + asitLO

δ′s + δsi
′
tLO

a′s + VFs + Vεs

————

VY d = 2δdkδ
′
d+2adja

′
d+δdw

′
d+wdδ

′
d+adq

′
d+qdad+δdgtδ

′
d+δdg

′
tδ
′
d+δditOL

a′d+

adi
′
tOL

δ′d + adhta
′
d + adh

′
ta
′
d + aditLO

δ′d + δdi
′
tLO

a′d + VFd + Vεd

—————————
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3.1.3 No AM

—————————

Ωp = Yp to [N ]Tp

= δpk + 1
2wp

————

Ωm = Ym to [N ]Tm

= δmk + 1
2wm

—————————

Γp = Yp to L[N ]Tp

= apj + 1
2qp

————

Γm = Ym to L[N ]Tm

= amj + 1
2qm

—————————

gt = ht = itLO
= itOL

= 0

—————————

gc = hc = ic = 0

—————————

VFp = fspVY pf
′
sp + fsmVYmf

′
sm

= VFs

————

VFm = fdpVY pf
′
dp + fdmVYmf

′
dm

= VFd

—————————

ws = wp = (Fs to [N ]Tp + Fs to [N ]Tm) = fspΩp + fsmΩm

————

wd = wm = (Fd to [N ]Tp + Fd to [N ]Tm = fdpΩp + fdmΩm

—————————

qp = Fp to L[N ]Tp

= fspΓp + fsmΓm

= qs

————

qm = Fm to L[N ]Tm
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= fdpΓp + fdmΓm

= qd

—————————

θNTs = Ys to NT∗

= ws

θNTd = Yd to NT∗

= wd

—————————

θTs = Ys to T∗

= 2δsk + θNTs

θTd = Ys/d to T∗

= 2δdk + θNTd

—————————

θLNTs = Ys/d to LNT∗

= qs

θLNTd = Ys/d to LNT∗

= qd

—————————

θLTs = Ys/d to LT∗

= 2asj + θLNTs

θLTd = Ys/d to LT∗

= 2adj + θLNTd

—————————

VY p = 2Ωpδp + 2Γpap + δpw
′
p + apq

′
p + VFp + Vεp

————

VYm = 2Ωmδm + 2Γmam + δmw
′
m + amq

′
m + VFm + Vεm

————

VY s = δsw
′
s + wsδs + asq

′
s + qsas + VFs + Vεs

————

VY d = δdw
′
d + wdδd + adq

′
d + qdad + VFd + Vεd

—————————
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3.2 Model 1 with Parental Effects

3.2.1 ≥ 2 generations of AM

—————————

Ωp = Yp to [N ]Tp

= 2δpgc + δpk + 1
2wp

————

Ωm = Ym to [N ]Tm

= 2δmgc + δmk + 1
2wm

—————————

gt = [N ]Tp to [N ]Tm

= Ω′pµΩm

—————————

VFp = fspVY pf
′
sp + fsmVYmf

′
sm + fspVY pµVYmf

′
sm + fsmVYmµ

′VY pf
′
sp

= VFs

————

VFm = fdpVY pf
′
dp + fdmVYmf

′
dm + fdpVY pµVYmf

′
dm + fdmVYmµ

′VY pf
′
dp

= VFd

—————————

wp = Fp to [N ]Tp

= fspΩp + fsmΩm + fspVY pµΩm + fsmVYmµ
′Ωp

= ws

————

wm = Fm to [N ]Tm

= fdpΩp + fdmΩm + fdpVY pµΩm + fdmVYmµ
′Ωp

= wd

—————————

θNTs = Ys to NT∗

= 2δsgc + δsgt + δsg
′
t + ws

θNTd = Yd to NT∗

= 2δdgc + δdgt + δdg
′
t + wd

—————————
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θTs = Ys to T∗

= 2δsk + θNTs

θTd = Yd to T∗

= 2δdk + θNTd

—————————

VY p = 2Ωpδp + δpw
′
p + VFp + Vεp

= VY s

————

VYm = 2Ωmδm + δpw
′
p + VFm + Vεm

= VY d

————

VY s = δsw
′
s + wsδ

′
s + δsgtδ

′
s + δsg

′
tδ
′
s + VFs + Vεs

————

VY d = δdw
′
d + wdδ

′
d + δdgtδ

′
d + δdg

′
tδ
′
d + VFd + Vεd

—————————

3.2.2 After 1 Generation of AM

—————————

Ωp = Yp to [N ]Tp

= δpk + 1
2wp

————

Ωm = Ym to [N ]Tm

= δmk + 1
2wm

—————————

gt = [N ]Tp to [N ]Tm

= Ω′pµΩm

—————————

gc = 0

—————————

VFp = fspVY pf
′
sp + fsmVYmf

′
sm

————

VFm = fdpVY pf
′
dp + fdmVYmf

′
dm

————
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VFs = fspVY pf
′
sp + fsmVYmf

′
sm + fspVY pµVYmf

′
sm + fsmVYmµ

′VY pf
′
sp

————

VFd = fdpVY pf
′
dp + fdmVYmf

′
dm + fdpVY pµVYmf

′
dm + fdmVYmµ

′VY pf
′
dp

—————————

wp = Fp to [N ]Tp

= fspΩp + fsmΩm

————

wm = Fm to [N ]Tm

= fdpΩp + fdmΩm

————

ws = Fs to [N ]T∗

= fspΩp + fsmΩm + fspVY pµΩm + fsmVYmµ
′Ωp

————

wd = Fd to [N ]T∗

= fdpΩp + fdmΩm + fdpVY pµΩm + fdmVYmµ
′Ωp

—————————

θNTs = Ys to NT∗

= δsgt + δsg
′
t + ws

θNTd = Yd to NT∗

= δdgt + δdg
′
t + wd

—————————

θTs = Ys to T∗

= 2δsk + θNTs

θTd = Yd to T∗

= 2δdk + θNTd

—————————

VY p = 2Ωpδp + δpw
′
p + VFp + Vεp

————

VYm = 2Ωmδm + δmw
′
m + VFm + Vεm

————

VY s = δsw
′
s + wsδ

′
s + δsgtδ

′
s + δsg

′
tδ
′
s + VFs + Vεs

————

VY d = δdw
′
d + wdδ

′
d + δdgtδ

′
d + δdg

′
tδ
′
d + VFd + Vεd
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—————————

3.2.3 No AM

—————————

Ωp = Yp to [N ]Tp

= δpk + 1
2wp

————

Ωm = Ym to [N ]Tm

= δmk + 1
2wm

—————————

gt = 0

—————————

gc = 0

—————————

VFp = fspVY pf
′
sp + fsmVYmf

′
sm

= VFs

————

VFm = fdpVY pf
′
dp + fdmVYmf

′
dm

= VFd

—————————

ws = wp = Fs to [N ]Tp + Fs to [N ]Tm

= fspΩp + fsmΩm

————

wd = wm = Fd to [N ]Tp + Fd to [N ]Tm

= fdpΩp + fdmΩm

MCK: All good above

—————————

θNTs = Ys to NT∗

= ws

θNTd = Yd to NT∗

= wd

—————————

θTs = Ys to T∗
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= 2δsk + θNTs

θTd = Ys/d to T∗

= 2δdk + θNTd

—————————

VY p = 2Ωpδp + δpw
′
p + VFp + Vεp

————

VYm = 2Ωmδm + δmw
′
m + VFm + Vεm

————

VY s = δsw
′
s + wsδ

′
s + VFs + Vεs

————

VY d = δdw
′
d + wdδ

′
d + VFd + Vεd

—————————
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3.3 Models 0 and 1 [OUTDATED MATH, DO NOT USE]

fdp ∗ Γp + fdm ∗ VYm ∗ µ′ ∗ Γp

fdpΓp + fdmVYmµ
′Γp

Note: The text ”to” in the below shows the directionality of the untransposed

covariances– for asymmetric covariance matrices, they show which 2 variables

should be on the left (defining rows) ”to” which 2 variables should be on the

top (defining columns). Unfortunately, the use of a directional arrows in this

document would have caused confusion because it’s the opposite of a path dia-

gram arrow directionality.

Ω (Y to [N ]T ) =

[N ]T1 [N ]T2[ ]
Y1 Ω11 Ω12

Y2 Ω21 Ω22

Ω = δ(k + gc) + 1
2w + δgc

Ω = δk + 2δgc + 1
2w

MCK: checked

Ω′ ([N ]T to Y ) =

Y1 Y2[ ]
[N ]T1 Ω11 Ω21

[N ]T2 Ω12 Ω22

Ω′ = (k + gc)δ
′ + 1

2w
′ + gcδ

′

Ω′ = kδ′ + 2gcδ
′ + 1

2w
′

MCK: checked

gt = gtrans (Tp to Tm) =

[N ]T1m [N ]T2m[ ]
[N ]T1p gt,pp gt,pm

[N ]T2p gt,mp gt,mm

gt = Ω′pµΩm
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g′t = g′trans (Tm to Tp) =

[N ]T1p [N ]T2p[ ]
[N ]T1m gt,pp gt,mp

[N ]T2m gt,pm gt,mm

g′t = Ω′mµ
′Ωp

MCK: checked

Note: it is crucial to use gt when traversing Tp to Tm and to use g′t when travers-

ing Tm to Tp. This should only matter for finding covariances between mates

as most other g’s used in expectations are gc.

gc = gcis = 1
2 (gt + g′t)

MCK: I have checked (via simulation) that it’s actually the arithmetic mean we

need here and not the geometric mean (see comments in main.tex). This makes

gc off-diagonal elements be the same, and equal to the arithmetic mean of the

off-diagonal elements of gt.

VY = δ(k+gc)δ
′+δ 1

2w
′+δgcδ

′+ 1
2wδ

′+VF + 1
2wδ

′+δ(k+gc)δ
′+δ 1

2w
′+δg′cδ

′+Vε

= 2Ωδ′ + wδ′ + VF + Vε

VF = 2fVY f
′ + 2fVY µVY f

′

= 2fVY (f ′ + µVY f
′)

MCK: still needs to be checked

wsp (Fs to [N ]Tp) =

[N ]T1p [N ]T2p[ ]
F1s ws11 w12

F2s w21 w22

w = 2fΩ + 2fVY µ
′Ω

w = 2f(Ω + VY µ
′Ω)

w′ ([N ]T to F ) =

F1 F2[ ]
[N ]T1 w11 w21

[N ]T2 w12 w22

w′ = 2Ω′f ′ + 2Ω′µVY f
′
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w′ = 2Ω′(f ′ + µVY f
′)

MCK: Both w and w′ have been checked in mathematica and are correct, in-

cluding the µ′ in the w equality. Therefore, when the path is traversed from F to

[N ]T , the coefficient is 1
2w, and when the path is traversed from [N ]T to F , the

coefficient is 1
2w
′. The asymmetry of w has nothing to do with parental origin

effects (fp vs. ff ). Rather, it is intrisic to w: cov(F1, [N ]T2) 6= cov(F2, [N ]T1),

which is a consequence of f and µ being full.

However, if we do have sex-specific parental f , one could trace Fo to [N ]Tp, or

Fo to [N ]Tm, and these will be different. This would lead to two different w’s:

wp (to the father) and wm (to the mother). Which w should be used within-

person? In this case, the paternally and maternally derived alleles are again

mixed (ala gc), and thus w = 1
2 (wp + wm). Note that unlike gc, however, this

equality should not be w = 1
2 (wp+w′m) - that would lead to a symmetric matrix

w which cannot be correct. Instead, we want the two off-diagonals of w to be

the geometric means of the two off-diagonals wp and wm respectively.

MCK: Both w and w′ need to be re-checked. I checked that the above (and it

worked) when tracing from Fo to [N ]Tp but not Fo to [N ]Tm. From looking at

it, these should differ according to our rules for µ - it should be the same as

above but with µ transposed when untransposed above, and vice-versa. I think

therefore that we actually have to separate wp from wm, even when there are

no sex-specific effects of f , and if so, we’d need to find w (within-person g-e

covariance) as the geometric mean, as discussed above.

MCK: OK, both Fo to [N ]Tp and Fo to [N ]Tm have been checked and they

are not the same things. Take the extreme example where male traits aren’t

heritable but female ones are, then Fo to [N ]Tp will be 0 but Fo to [N ]Tm will

be > 0. So we need to have separate coefficients (we’ll call them wp and wm

respectively) for each. And for the same reasons that gc is the arithmetic mean

of gt and g′t, w (within-person, regardless of their sex) should be the arithmetic

mean of wp and wm (not w′m).

θNT = Yo to NT

= 2[fΩ + fVY µΩ + δg′ + δΩ′µΩ]

= 4δg + w

(In our paper’s supplement, θNT = 4δg + 2w, but I think this might be a mis-

take?)
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MCK: This is checked is correct. The paper supp is wrong

θT = Y to T

= 2[δ(k + g) + fΩ + δΩ′µΩ + fVY µΩ]

= 2δk + 4δg + w

= 2δk + θNT

MCK: this is checked

θT − θNT = 2δk

= 2

[
δ11k11 δ11k12

δ22k12 δ22k22

]
MCK: Note that I removed the ro that was originally in the off-diagonals of this

matrix - it’s undefined. I believe the above is the correct way. Unf I forgot to

save the old way you had it

3.4 Model 2

JVB: The changes I’m making below are largely for the purpose of incorporat-

ing/ differentiating trans and cis covariances, and the asymmetric mu matrix

Ω = Y to [N ]T

= ai+ δ(k + g) + 1
2w + δg∗ + ai

= δk + 2ai+ 2δg + 1
2w

JVB:

Ω = aic + δ(k + gc) + 1
2w + δgc + aic

= δk + 2δgc + 2aic + 1
2w

—————————

Ω′ = [N ]T to Y

= i′a′ + (k + g)δ′ + 1
2w
′g∗δ′ + i′a′

= kδ′ + 2i′a′ + 2gδ′ + 1
2w
′

JVB:

Ω′ = (k + gc)δ + 1
2w
′ + gcδ + i′ca+ i′ca
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kδ + 2gcδ + 2i′ca+ 1
2w
′

—————————

Γ = Y to L[N ]T

= a(j + h) + δi′ + 1
2v + δi′ + ah∗

= aj + 2ah+ 2δi′ + 1
2v

JVB:

Γ = a(j + hc) + δi′c + 1
2v + δi′c + ahc

= aj + 2ahc + 2δi′c + 1
2v

—————————

Γ′ = L[N ]T to Y

= (j + h)a′ + iδ′ + 1
2v
′ + iδ′ + h∗a

= ja′ + 2ha′ + 2iδ′ + 1
2v
′

—————————

h = LNT to LT

h = Γ′µΓ

—————————

i = L[N ]T to [N ]T

= Γ′µΩ

—————————

g = NT to T

= Ω′µΩ

VY = 2Γa′ + 2Ωδ′ + δw′ + av′ + VF + Vε

w = F to [N ]T

= 2(fΩ + fVY µΩ)

w′ = [N ]T to F

= 2(Ω′f ′ + Ω′µVY f
′)
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v = F to L[N ]T

= 2(fΓ + fVY µΓ)

v′ = L[N ]T to F

= 2(Γ′f ′ + Γ′µVY f
′)

θNT = Y to NT

= 2( 1
2w + δg′ + ai+ δg′ + ai)

= 4δg′ + 4ai+ w

θT = Y to T

= 2( 1
2w + δ(k + g) + ai+ δg + ai)

= 2δk + 4δg + 4ai+ w

= 2δk + θNT

θLNT = Y to LNT

= 2( 1
2v + δi′ + ah′ + δi′ + ah′)

= 4δi′ + 4ah′ + v

θLT = Y to LT

= 2( 1
2v + δi′ + a(j + h) + δi′ + ah)

= 2aj + 4δi′ + 4ah+ v

= 2aj + θLNT

4 Expanded Matrices

4.1 Models 0 and 1

Ω =

[
2δ1g1 + δ1k1 + 0.5w1 2δ1g12 + δ1k12 + 0.5w12

2δ2g12 + δ2k12 + 0.5w21 2δ2g2 + δ2k2 + 0.5w2

]

g =

[
Ω1(µ1Ω1 + µ12Ω21) + Ω21(µ12Ω1 + µ2Ω21) Ω12(µ1Ω1 + µ12Ω21) + Ω2(µ12Ω1 + µ2Ω21)

Ω1(µ1Ω12 + µ12Ω2) + (µ12Ω12 + µ2Ω2)Ω21 Ω12(µ1Ω12 + µ12Ω2) + Ω2(µ12Ω12 + µ2Ω2)

]
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VY =

[
V E1 + V F1 + 2δ1(2δ1g1 + δ1k1 + 0.5w1) + δ1w1 V E12 + V F12 + 2δ2(2δ1g12 + δ1k12 + 0.5w12) + δ2w12

V E12 + V F12 + 2δ1(2δ2g12 + δ2k12 + 0.5w21) + δ1w21 V E2 + V F2 + 2δ2(2δ2g2 + δ2k2 + 0.5w2) + δ2w2

]

θNT =

[
4δ1g1 + w1 4δ1g12 + w12

4δ2g12 + w21 4δ2g2 + w2

]

θT =

[
4δ1g1 + 2δ1k1 + w1 4δ1g12 + 2δ1k12 + w12

4δ2g12 + 2δ2k12 + w21 4δ2g2 + 2δ2k2 + w2

]

4.2 Model 2

Ω =

[
2δ1g1 + 2a1i1 + δ1k1 + 0.5w1 2δ1g12 + 2a1i12 + δ1k12 + 0.5w12

2δ2g12 + 2a2i12 + δ2k12 + 0.5w21 2δ2g2 + 2a2i2 + δ2k2 + 0.5w2

]

Γ =

[
2a1h1 + 2δ1i1 + a1j1 + 0.5v1 2a1h12 + 2δ1i12 + a1j12 + 0.5v12

2a2h12 + 2δ2i12 + a2j12 + 0.5v21 2a2h2 + 2δ2i2 + a2j2 + 0.5v2

]

θNT =

[
4δ1g1 + 4a1i1 + w1 4δ1g12 + 4a1i12 + w12

4δ2g12 + 4a2i12 + w21 4δ2g2 + 4a2i2 + w2

]

θT =

[
4δ1g1 + 4a1i1 + 2δ1k1 + w1 4δ1g12 + 4a1i12 + 2δ1k12 + w12

4δ2g12 + 4a2i12 + 2δ2k12 + w21 4δ2g2 + 4a2i2 + 2δ2k2 + w2

]

θLNT =

[
4a1h1 + 4δ1i1 + v1 4a1h12 + 4δ1i12 + v12

4a2h12 + 4δ2i12 + v21 4a2h2 + 4δ2i2 + v2

]

θLT =

[
4a1h1 + 4δ1i1 + 2a1j1 + v1 4a1h12 + 4δ1i12 + 2a1j12 + v12

4a23h12 + 4δ2i12 + 2a2j12 + v21 4a2h2 + 4δ2i2 + 2a2j2 + v2

]
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