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Supplementary Notes

1 Assortative mating and the joint distribution of causal variants;

previous results

Here we briefly introduce the model of assortative mating (AM) on a quantitative trait first introduced in

by Fisher in the early twentieth century1 and later developed with greater rigor by a number of quantitative

geneticists2,3,4,5,6. Results, all of which are presented directly in Nagylaki4 or, in light of a few additional

assumptions, are immediate corollaries thereof, are stated without proof.

2



1.1 Quantitative genetic model and notation

Consider a phenotype Y with zero expectation influenced bym standardized diploid causal SNP loci {Zk}mk=1,

Y =

m∑
k=1

Zkũk + E, (1)

E ∼ N (0, σ2
e), (2)

where E represents the non-heritable component of Y and is assumed to be independent of the genotypes.

“Standardization” here is with respect to the variance of a diploid biallelic genotype under Hardy-Weinberg

equilibrium (HWE). Thus, standardized genotypes at polymorphic loci not in HWE will not have unit

variance.

As in4, we assume that the vector of allele substitution effects ũ is such that σ2
g,0 = ũT ũ,

∑
k ũk = 0.

We will make the additional assumption that the allelic substitution effects are uniformly bounded in that

there exists 0 < c < ∞ such that, for all m, maxk=1,...,m |ũk| ≤ c ·m−1/2. In other words, for increasingly

polygenic traits, effect sizes remain commensurately small. At each locus, define the diploid genic value as

as Zk = Zkũk, k = 1, . . . ,m. Each Zk can be represented as the weighted sum of two haploid genic values

Zk = 2−1/2(H1
k+H

2
k) = 2−1/2(H1

k+H2
k)ũk, k = 1, . . . ,m. For the sake of cleaner notation, we will sometimes

singly index haploid genic values {Hj
k}

j∈{1,2}
1≤k≤m as {Gk}1≤k≤2m such that Gk = H1+k̄2

⌈k/2⌉ (where k̄2 denotes k

mod 2), and proceed analogously for genotypes Gk such that Gkuk = H1+k̄2

⌈k/2⌉ũ⌈k/2⌉ := H1+k̄2

⌈k/2⌉uk.

Each causal haploid genotype Hk has been standardized such that E[Hk] = 0, V ar(Hk) = 1. The same is

true of each Zk when when H1
k and H2

k are independent as under random mating (i.e., under Hardy-Weinberg

equilibrium). Thus, the initial genetic variance of Y is simply

V ar

(
m∑

k=1

Zkũk

)
= ũT ũ = σ2

g,0. (3)

We can thus write the phenotype in terms of the genic values or genotypes in multiple ways:

Y =
∑m

k=1 Zk + E =
∑m

k=1 Zkũk + E

= 1√
2

∑2m
k=1Gk + E = 1√

2

∑2m
k=1 Gkuk + E

= 1√
2

∑m
k=1(H

1
k +H2

k) + E = 1√
2

∑m
k=1(H1

k +H2
k)ũk + E.

(4)

The haploid genic values follow a multivariate distribution such that, for all k,

E[Zk] = E[Gk] = E[H1
k ] = E[H2

k ] = 0, (5)

E[Zk] = E[Gk] = E[H1
k] = E[H2

k] = 0, (6)
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V ar(Zk)t=0 = V ar(G2k) = V ar(H1
k) = V ar(H2

k) = ũ2k, (7)

V ar(Zk)t=0 = V ar(Gk) = V ar(H1
k) = V ar(H2

k) = 1, (8)

and

Ek[V ar(Zk)t=0] = Ek[V ar(Gk)] = · · · = σ2
g,0/m, (9)

Ek[V ar(Zk)t=0] = Ek[V ar(Gk)] = · · · = 1, (10)

where Ek[·] denotes the average over loci (i.e., expectation with respect to the probability measure assigning

equal probability to each causal locus). The qualification that the above holds for diploid quantities only

at generation zero reflects the fact that the univariate marginal distributions of haploid quantities are time-

invariant whereas diploid quantities are subject to departures from Hardy-Weinberg equilibrium.

When all of haploid genic values {Gk}2mk=1 are independent, as is expected for unlinked loci under random

mating, the variance of the phenotype is simply

V ar(Y ) = E

[
1

2

2m∑
k=1

G2
k

]
+ σ2

e (11)

= σ2
g,0 + σ2

e . (12)

On the other hand, if the genic values {Gk}2mk=1 have non-zero second moments, the total variance is

V ar(Y ) =
1

2

2m∑
k,l=1

E[GkGl] + σ2
e

=
1

2

2m∑
k,l=1

ukulCorr(GkGl) + σ2
e . (13)

For the special case where the allelic substitution effects ui and the correlation among haploid genic values

are the same for all i, j, k, l, i 6= j ∨ k 6= l (i.e., for exchangeable loci), Corr(Hi
k,H

j
l ) ≡ µ, we have

V ar(Y ) =
µ

2

2m∑
k,l=1

ukul + (1− µ)

m∑
k=1

ũ2k + σ2
e (14)

= 2µ

(
m∑

k=1

ũm

)2

+ (1− µ)σ2
g,0 + σ2

e (15)

= σ2
g,0 (1 + (2m− 1)µ) + σ2

e (16)
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1.2 Causal variant dynamics across generations

Let Y ∗, Y ∗∗, and Ỹ and denote the respective phenotypes of parent-parent-offspring trio and similarly denote

related quantities. Index generations with t ∈ Z+ and define the following parameters:

• ℓkl,t = Corr(H1
k,t,H

2
l,t) = Corr(H2

k,t,H
1
l,t), k, l ∈ {1, . . . ,m}, the correlation between haploid genic

values on uniting gametes at generation t (within either parent),

• κkl,t = Corr(H1
k,t,H

1
l,t) = Corr(H2

k,t,H
2
l,t), k, l ∈ {1, . . . ,m}, the correlation between haploid genic

values within either parent on the same gamete at generation t (note that for k = l, κkl,t = 1),

• µkl,t = Corr(Hi∗
k,t,H

j∗∗
l,t ) = Corr(Hi∗

k,t,H
i∗∗
l,t ) k, l ∈ {1, . . . ,m}, i, j ∈ {1, 2}, the cross mate correlation

between haploid genic values at generation t,

• Υt = {κkl,t + ℓkl,t}kl, the m×m covariance matrix for diploid genotypes {Zk}mk=1 at generation t,

• uk =
√
V ar(Gk), the time-invariant standard deviation of the kth haploid locus; because each Gk

has unit variance, we have Ek[u
2
k] = σ2

g,0/m, and uTu = 2σ2
g,0; we also denote the kth diploid locus

standard deviation by ũk = u⌈k/2⌉ with ũT ũ = σ2
g,0,

• σ2
g,t = 2−1V ar(

∑2m
k=1Gk) = ũTΥtũ, the genetic variance at generation t given genotypes,

• σ2
e = V ar(E), the time-invariant residual variance,

• σ2
y,t = σ2

g,t + σ2
e , the phenotypic variance at generation t,

• h2t = σ2
g,t/σ

2
y,t, the heritability at generation t,

• r = Corr(Y ∗, Y ∗∗) ∈ (0, 1), the time-invariant phenotypic correlation between mates,

• covg,t = 2−1Cov(
∑2m

k=1G
∗
k,
∑2m

k=1G
∗∗
k )t= 2−1

∑2m
k,l=1 ukulµ⌈k/2⌉⌈l/2⌉,t, the genetic covariance between

mates at generation t,

• rg,t = covg,t/σ
2
g,t, the genetic correlation between mates at generation t. Note that we also have

rg,t = r · h2t , because corr (
∑
G∗

k,
∑
G∗∗

k ) = corr (
∑
G∗

k, Y
∗) corr (Y ∗, Y ∗∗) corr (Y ∗∗,

∑
G∗∗

k ).

At generation zero, we assume that causal variants are unlinked, i.e., that κk≠l,0 ≡ ℓkl,0 ≡ 0, and at all

generations we assume that recombination is equally likely to occur or not to occur between causal loci.

Again following4, in an infinitely large population, a single generation of assortative mating yields the

following recurrence for correlations among haploid causal variants:

ℓkl,t = µkl,t−1, (17)
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κkl,t =
1

2
(κkl,t−1 + ℓkl,t−1) Jk 6= lK + Jk = lK , (18)

such that σ2
g,t =

∑m
k,l=1(κkl,t + ℓkl,t)ũkũl = ũTΥtũ. The above system approaches a stable equilibrium such

that

κkl,∞ = ℓkl,∞ = µkl,∞, for k 6= l, (19)

ℓkk,∞ = µkk,∞. (20)

At this fixed point, we can write the equilibrium genetic variance in terms of the generation zero genetic

variance and the correlations among haploid effects, recalling that covg,t = 1
2

∑2m
kl=1 ukulµ⌈k/2⌉⌈l/2⌉,t:

σ2
g,∞ =

m∑
k,l=1

(κkl,∞ + ℓkl,∞)ũkũl (21)

= σ2
g,0 +

1
2

2m∑
k,l=1

ukulµ⌈k/2⌉⌈l/2⌉,∞ − 1
2

2m∑
k=1

u2kµ⌈k/2⌉⌈k/2⌉,∞ (22)

= σ2
g,0 + (1−m−1

e )covg,∞ (23)

where the effective number of loci is defined as

me :=

 2m∑
k,l

µ⌈k/2⌉⌈l/2⌉,∞ukul

 /

(
2m∑
k=l

µ⌈k/2⌉⌈k/2⌉,∞u
2
k

)
(24)

Defining Q = 1 − 1/me we have that σ2
g,∞ = σ2

g,0 + Q · covg,∞, noting that that Q → 1 as me → ∞. We

assume that me is large and replace Q with the approximation Q ≈ 1.

Using the relation µ⌈k/2⌉⌈l/2⌉,∞ = rνk,∞νl,∞ derived below, this assumption reduces to the assumption

2m∑
k,l

νk,∞νl,∞ukul �
2m∑
k=1

(
ν2k,∞u

2
k

)
, (25)

or, equivalently, that

2m∑
k,l

νk,∞νl,∞ukul = νT∞uu
T ν∞ =

(
2m∑
k=1

νk,∞uk

)2

�
2m∑
k=1

(
ν2k,∞u

2
k

)
. (26)

Substituting via rg,t = covg,t/σ
2
g,t, the equilibrium genetic variance for polygenic traits is approximated as
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σ2
g,∞ ≈ σ2

g,0(1− rg,∞)−1. Substituting rg,∞ = rh2∞, the equilibrium heritability is then computed

h2∞ ≈
σ2
g,0(1− rh2∞)−1

σ2
g,0(1− rh2∞)−1 + σ2

e

. (27)

In terms of the time-invariant phenotypic correlations between mates r = rg,∞/h2∞, the equilibrium heri-

tability can be written

h2∞ ≈
σ2
g,0(1− rh2∞)−1

σ2
g,0(1− rh2∞)−1 + σ2

e

(28)

=⇒ h2∞ ≈ (2rσ2
e)

−1

(
σ2
e + σ2

g,0 ±
√
(2− 4r)σ2

eσ
2
g,0 + σ4

e + σ4
g,0

)
(29)

= (2rσ2
e)

−1

(
σ2
e + σ2

g,0 ±
√
σ4
y,0 − 4rσ2

eσ
2
g,0

)
. (30)

The upper root in this expression can be excluded because it is necessarily greater than or equal to

1, with equality only when r = 1. This can be shown from the following observation together with√
(1− h20)

−2 − 4rh20 (1− h20)
−1 ≥

∣∣∣(1− h20
)−1 − 2r

∣∣∣. Observing that σ2
g,0/σ

2
e = h20(σ

2
e + σ2

g,0)/σ
2
e = h20/(1−

h20), we can then write the equilibrium heritability in terms of the phenotypic correlation between mates and

the generation zero heritability:

h2∞ ≈ (2r)−1

(
(1− h20)

−1 −
√
(1− h20)

−2 − 4rh20(1− h20)
−1

)
. (31)

Similarly, the equilibrium genetic correlation between mates is

rg,∞ ≈
rσ2

g,0(1− rg,∞)−1

σ2
g,0(1− rg,∞)−1 + σ2

e

(32)

=⇒ rg,∞ =
(
2σ2

e

)−1
(
σ2
e + σ2

g,0 −
√
(2− 4r)σ2

eσ
2
g,0 + σ4

e + σ4
g,0

)
(33)

=
1

2

(
(1− h20)

−1 −
√
(1− h20)

−2 − 4rh20(1− h20)
−1

)
. (34)

Finally, the equilibrium variance is computed

σ2
y,∞ ≈ σ2

e + σ2
g,0(1− rg,∞)−1 (35)

=

(
1− rg,∞(1− h20)

1− rg,∞

)
σ2
y,0. (36)

Further assumptions are required to make any explicit claims about the equilibrium values of the correlations

between haploid causal variants, µkl,∞, k, l = 1, . . . ,m. As in4, we assume the regressions of individuals’
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genetic scores on their phenotypes, and on their mates’ values, are linear:

E

[
2−1/2

2m∑
k=1

G∗
k

∣∣∣∣∣Y ∗

]
= h2tY

∗, E

[
2−1/2

2m∑
k=1

G∗
k

∣∣∣∣∣Y ∗∗

]
= rh2tY

∗∗, (37)

and that the same is true of their individual haploid genic values:

E[G∗
k|Y ∗] = νk,tukσ

−1
y,tY

∗, (38)

where νk denotes the correlation between the haploid genic value and the phenotype. At equilibrium, we

then have

E[G∗
k|Y ∗∗] = rνk,∞ukσ

−1
y,∞Y

∗∗. (39)

Thus, by conditional independence of mates’ genotypes, we have

µkl,∞ukul = E[G∗
kG

∗∗
l ] (40)

= E [E[G∗
k|Y ∗∗]E[G∗∗

l |Y ∗∗]] (41)

= rukulνk,∞νl,∞ (42)

=⇒ µkl,∞ = rνk,∞νl,∞. (43)

We abuse notation here such that µkl,∞ refers to µ⌈k/2⌉⌈l/2⌉,∞. Compute νk,∞ as follows:

νk,∞σy,∞uk = E[GkY ] (44)

=

2m∑
l=1

2−1/2ukulE[GkGl] (45)

=⇒ νk,∞ = 2−1/2ukσ
−1
y,∞(1− rν2k,∞) + 2−1/2rνk,∞σ

−1
y,∞

2m∑
l=1

νl,∞ul. (46)

Now, writing

h2∞Y = E

[
2−1/2

2m∑
l=1

Gl

∣∣∣∣∣Y
]
= 2−1/2σ−1

y,∞

2m∑
l=1

νl,∞ulY, (47)

yields h2∞ = σ−1
y,∞2−1/2

∑2m
l=1 νl,∞ul, which we then substitute into the previous expression to yield

νk,∞ = σy,∞

(
21/2ukr

)−1
(√

2u2kr

σ2
y,∞

+ (1− rg,∞)
2 − (1− rg,∞)

)
. (48)
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Note that, under exchangeable loci, we then have νk,∞ ≡ ±ν∞ for all k, which in turn implies that µkl,∞ =

±rν2∞ ≡ ±µ∞ for all k, l, with sgnµkl,∞ = sgnukul. That is, the equilibrium correlations between distinct

haploid loci are all of equal magnitude, which can be bounded as:

covg,∞ =
1

2

2m∑
k,l=1

ukulµ∞ (49)

= 4m2
(
σ2
g,0/2m

)
µ∞ (50)

=⇒ µ∞ = ±
rg,∞σ

2
g,∞

2mσ2
g,0

= O(m−1). (51)

In the more general case, for a highly polygenic trait with fixed generation zero conditions, we can employ

our assumption that maxk=1,...,m |ũk| ≤ c ·m−1/2 to obtain a similar bound. The equilibrium correlations

between genic values are µkl,∞ = rνk,∞νl,∞. Defining βk = ukσ
−1
y,∞ = O(m−1/2), we compute the equilibrium

correlation between mates’ haploid genic effects as

µkl,∞ = rνk,∞νl,∞ (52)

= σ2
y,∞

(
2r2ukul

)−1 (√
(1−rg,∞)2+2u2

krσ
−2
y,∞−(1−rg,∞)

)(√
(1−rg,∞)2+2u2

l rσ
−2
y,∞−(1−rg,∞)

)
(53)

=
(
2r2βkβl

)−1 (√
(1−rg,∞)2+2β2

kr−(1−rg,∞)
)(√

(1−rg,∞)2+2β2
l r−(1−rg,∞)

)
(54)

= 1
2 (1− rg,∞)

−2 |βkβl|+ O
(
β3
k, β

3
l

)
(55)

=⇒ |µkl,∞| = O(m−1). (56)

The last statement follows from the fact that (1 − rg,∞)−2 is bounded independent of m via rg,∞ = rh2∞

with r ∈ (0, 1), h2∞ ∈ [0, 1]. In general, we can write the equilibrium covariance between diploid genotypes

as

Υ∞ = {Cov(Zk,Zl)}mk,l=1 (57)

=


1 + rν21,∞ Symm

2rν1,∞ν2,∞
. . .

... . . . . . .

2rν1,∞νm,∞ · · · 2rνm−1,∞νm,∞ 1 + rν2m,∞

 (58)

:=D + 2ϕϕT , (59)

where ϕ = (
√
rνk,∞)mk=1 and D = diag(1− ϕ2k)

m
k=1.
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2 Assortative mating and the joint distribution of causal variants;

novel results

The results presented in the previous section characterize the first and second moments of causal variants

under AM but not moments of higher order. In this section, we employ tools from thermodynamics to

directly characterize the equilibrium joint distribution of causal variants and thereby obtain bounds for all

higher order moments in terms of the number of causal variants m. Then, based on said bounds, we extend

previous results in random matrix theory in order the characterize the limiting spectral distribution of a

class of covariance matrices generated from random matrices with dependent entries. Finally, we describe

the limiting spectral distribution of the genetic relatedness matrix (GRM) under AM.

2.1 A thermodynamic approach

At equilibrium, the variance and covariance of mates’ phenotypes are constant across generations. These

equilibrium values define the stationary dynamics of assortative mating, and they can be naturally expressed

in terms of energy functions suitable for analysis using tools from thermodynamics. This analysis yields a

complete characterization of the genetic distribution.

2.1.1 Energy functions and maximum entropy

Begin by defining energy functions

E1 (Y
∗, Y ∗∗) = −Y ∗2 (60)

E2 (Y
∗, Y ∗∗) = −Y ∗∗2 (61)

E3 (Y
∗, Y ∗∗) = −Y ∗Y ∗∗. (62)

The intuition from thermodynamics is that states with lower energies are more likely. Thus E3 expresses

that mates’ phenotype are positively correlated. The signs for E1 and E2 are counterintuitive, but it will

be seen below that a countervailing combinatoric effect in going from genotypes to phenotypes leads smaller

values of Y ∗2 and Y ∗∗2 to be more likely, as expected. For now, the signs of these functions can be thought

of as purely definitional.

In equilibrium, we have fixed values for the mean energies:

〈E1〉 = −σ2
y,∞

〈E2〉 = −σ2
y,∞

〈E3〉 = −rσ2
y,∞. (63)
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Because the dynamics are determined fully at the phenotype level (macroscale), the equilibrium distribution

at the genotype level (microscale) will maximize entropy with respect to the macroscale constraints (i.e.,

Supplementary Equation (63)). Standard thermodynamic analysis thus implies the genotypes obey a Boltz-

mann distribution. This enables us to characterize exactly the joint genotypic distribution for mates, and

thereby to calculate arbitrary moments and other statistics.

2.1.2 The joint distribution of genotypes under simplifying assumptions

To simplify the initial analysis, take σ2
e = 0, and assume that all SNPs have a minor allele frequency (MAF)

of 1/2 and effects ui = σg,0/
√
2m. Thus Gi = ±1 and Gi = ±σg,0/

√
2m for all i. Denote individuals genetic

scores by G =
∑2m

i=1Gi, noting that, in this simplified case, Y = G .

The energy functions can be re-expressed as functions of microstates:

E1 (G∗,G∗∗) = −
2m∑
ij=1

G∗
iG

∗
j .

E2 (G∗,G∗∗) = −
2m∑
ij=1

G∗∗
i G

∗∗
j .

E3 (G∗,G∗∗) = −
2m∑
ij=1

G∗
iG

∗∗
j . (64)

Standard thermodynamic analysis then yields the following Boltzmann distribution for mates’ genotypes:

P [G∗,G∗∗] ∝ exp [−αE1 (G∗,G∗∗)− βE2 (G∗,G∗∗)− γE3 (G∗,G∗∗)] (65)

= exp

α 2m∑
ij=1

G∗
iG

∗
j + β

2m∑
ij=1

G∗∗
i G

∗∗
j + γ

2m∑
ij=1

G∗
iG

∗∗
j

 . (66)

The parameters α, β, and γ are inverse temperatures, with values to be determined.

Mathematically, the inverse temperature parameters correspond to Lagrange multipliers for the hard con-

straints in Supplementary Equation (63). Typically, these parameters are solved for by substituting the

Boltzmann distribution back into the constraint equations (here three constraints for three unknowns). In

the present case, there are additional constraints from the assumption of genetic stationarity. Equilibrium

at the genetic level implies

E
[
G∗
i G∗

j

]
= E

[
G∗
i G∗∗

j

]
= E

[
G∗∗
i G∗∗

j

]
(67)

for all i 6= j (Section 1). This symmetry implies α = β and γ = 2β. In more detail, the exponent in

Supplementary Equation (66) can be written as GTAG, where G is the concatenation of G∗ and G∗∗ and

the entries of A are all α, β, or γ/2. Supplementary Equation (67) implies symmetry under permutation
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of the components of G, which implies all off-diagonal entries of A must be equal. This strong symmetry

argument doesn’t hold once we allow heterogeneous allelic effects, but symmetry between the components

corresponding to G∗
i and G∗∗

i , and likewise between G∗
j and G∗∗

j , are sufficient to conclude α = β and γ = 2β.

Based on this symmetry argument, the genetic distribution reduces to

P [G∗,G∗∗] ∝ exp

β( 2m∑
i=1

G∗
i +

2m∑
i=1

G∗∗
i

)2
 . (68)

All that remains to specify this distribution is to solve for β. This is done by requiring the distribution at

the phenotype level to satisfy the constraints of Supplementary Equation (63).

2.1.3 The joint distribution of phenotypes under simplifying assumptions

We translate the microstate distribution in Supplementary Equation (68) to a macrostate distribution by

coarse-graining. For any value of Y , let nY be the corresponding number of positive alleles, |{i : Gi = 1}|.

We have

Y = (nY − (2m− nY ))
σg,0√
2m

(69)

and therefore

nY = m+

√
m

2

Y

σg,0
. (70)

The number of genotypes consistent with Y is thus

Γ (2m+ 1)

Γ (nY + 1)Γ (2m− nY + 1)
≈ 22m√

πm
exp

[
− (nY −m)

2

m

]
(71)

=
22m√
πm

exp
[
− Y 2

2σ2
g,0

]
. (72)

The macrostate probabilities can then be obtained by multiplying the microstate probabilities by these

counts:

P [Y ∗, Y ∗∗] =
∑

G∗:G ∗=Y ∗

∑
G∗∗:G ∗∗=Y ∗∗

P [G∗,G∗∗] (73)

∝ 22m√
πm

exp
[
− Y ∗2

2σ2
g,0

]
· 22m√

πm
exp

[
−Y ∗∗2

2σ2
g,0

]
· exp

[
β (Y ∗ + Y ∗∗)

2
]

(74)

∝ exp
[(

β − 1

2σ2
g,0

)
Y ∗2 +

(
β − 1

2σ2
g,0

)
Y ∗∗2 + 2βY ∗Y ∗∗

]
. (75)

Writing

β =
r

2σ2
g,0 (1 + r)

(76)
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and

σ2
Y,∞ =

σ2
g,0

1− r
, (77)

we can re-express the phenotype distribution as

P [Y ∗, Y ∗∗] ∝ exp
[
− 1

2σ2
Y,∞ (1− r2)

(
Y ∗2 + Y ∗∗2 − 2rY ∗Y ∗∗)] , (78)

or equivalently

(Y ∗, Y ∗∗) ∼ N

0, σ2
Y,∞

 1 r

r 1

 . (79)

Supplementary Equation (79) satisfies the constraints of Supplementary Equation (63). Notice that this

analysis also yields an expression for the equilibrium phenotypic variance in Supplementary Equation (77),

which was taken as fixed but unknown. Altogether there were four unknowns (α, β, γ, σ2
Y,∞), and four

constraints from Supplementary Equations 63 and 67 (where E
[
G∗
i G∗

j

]
= E

[
G∗∗
i G∗∗

j

]
are 〈E1〉 = 〈E2〉 are

redundant).

2.1.4 Stationarity

Also useful is to verify that the genetic distribution of Supplementary Equation (68) is stationary. Above we

used the equilibrium assumption for any two sites, but not for the joint distribution over the full genome.

For ease of notation, number loci so that {i,m+ i} form a diploid pair, and assume without loss of generality

that inherited alleles from each parent come from sites 1 through m:

G̃i =

G
∗
i i ≤ m

G∗∗
i−m i > m.

(80)

Under these definitions, Supplementary Equation (68) can be rewritten as

P [G∗,G∗∗] ∝ exp

β( 2m∑
i=1

G̃i +

2m∑
i=m+1

G∗
i +

2m∑
i=m+1

G∗∗
i

)2
 , (81)

and therefore the marginal distribution for the offspring, G̃, is given by

P
[
G̃
]
∝

∑
{G∗

i }2m

i=m+1

∑
{G∗∗

i }2m

i=m+1

exp

β( 2m∑
i=1

G̃i +

2m∑
i=m+1

G∗
i +

2m∑
i=m+1

G∗∗
i

)2
 . (82)
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On the other hand, the marginal distribution for one parent is given by

P [G∗] ∝
∑

{G∗∗
i }2m

i=1

exp

β( 2m∑
i=1

G∗
i +

m∑
i=1

G∗∗
i +

2m∑
i=m+1

G∗∗
i

)2
 , (83)

which is equivalent to the previous expression under the change of variables

(
{G∗

i }
2m
i=1 , {G

∗∗
i }mi=1 , {G

∗∗
i }2mi=m+1

)
→
({

G̃i

}2m

i=1
, {G∗

i }
2m
i=m+1 , {G

∗∗
i }2mi=m+1

)
. (84)

In conclusion, the joint distribution of mates’ genotypes given by Supplementary Equation (68) (a) re-

produces the dynamics of assortative mating as captured in Supplementary Equation (63) (in particular

cor (Y ∗, Y ∗∗) = r), (b) is fully stationary, and (c) maximizes genotype-level entropy conditioned on the

constraints of the phenotype-level dynamics. Therefore Supplementary Equation (68) represents the ther-

modynamic equilibrium to which the population necessarily converges.

2.1.5 Extension to the general case

The above analysis made three simplifying assumptions: no environmental variance, all allele frequencies

are all 1/2, and homogeneous allelic effects (i.e., exchangeable loci). These must be removed to obtain a

complete model.

To include environmental variance, the above analysis can be applied to the genetic scores, G =
∑

iGi, in

place of the phenotypes, Y . The expression for equilibrium phenotypic variance in Supplementary Equation

(77) becomes an expression for equilibrium genetic variance, with the phenotypic correlation (r) replaced by

the genetic correlation (rg,∞):

σ2
g,∞ =

σ2
g,0

1− rg,∞
. (85)

Using the relationship

rg,∞ = r
σ2
g,∞

σ2
g,∞ + σ2

e

, (86)

we can derive the same expression for rg,∞ (and hence σ2
g,∞ and h2∞) as found by previous methods:

rg,∞ =
1

2

[(
1− h20

)−1 −
√
(1− h20)

−2 − 4rh20 (1− h20)
−1
]
. (87)

Substituting the genetic correlation for the phenotypic correlation in the expression for inverse temperature
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in Supplementary Equation (76), we obtain

β =
1 + 2rh20 −

√
1− 4rh20 (1− h20)

4σ2
g,0 (2 + rh20 − h20)

. (88)

The analysis above did not explicitly constrain allele frequencies, but the symmetry of Supplementary Equa-

tion (68) under sign reversal (G 7→ −G) implies all loci have minor allele frequencies (MAF) of 1/2. Arbitrary

frequencies values can be imposed by treating them as constraints in the entropy optimization problem, sup-

plementing Supplementary Equation (63). Writing pi as the MAF for site i and continuing to code Gi as ±1

(this is more convenient and conventional in the present framework than standardizing Gi), we have

〈Gi〉 = 1− 2pi. (89)

These constraints manifest as additional terms in the Boltzmann distribution:

P [G∗,G∗∗] ∝ exp

β( 2m∑
i=1

G∗
i +

2m∑
i=1

G∗∗
i

)2

+
∑
i

λi (G∗
i + G∗∗

i )

 . (90)

The λi coefficients are determined, together with β, by solving for the values that lead the distribution to

satisfy Supplementary Equations (63) and (89). The system described by Supplementary Equation (90) is

an instance of a spin glass, or generalized Ising model.

Finally, allowing heterogeneous allelic effects, ui, further complicates determination of β and {λi}. The

counting strategy of Supplementary Equations (70) and (72) no longer applies, because the genotypes con-

sistent with a given genetic score no longer arise from a binomial distribution (because of heterogeneous

ui), and because they no longer all have equal energy (because of heterogeneous MAF or λi). Nevertheless,

the expression for the genetic distribution in Supplementary Equation (90) is unchanged (only β and λi are

changed).

In summary, the complete characterization of the genetic distribution in the general case is given by Sup-

plementary Equation (90), with β and {λi} determined by the constraints in Supplementary Equations (63)

and (89). The former constraint amounts to calculating the joint distribution of genetic scores,

P [G ∗,G ∗∗] ∝
∑

G∗:
∑

G∗
i =G ∗

∑
G∗∗:

∑
G∗∗

i =G ∗∗

P [G∗,G∗∗] , (91)

using this distribution to calculate the genetic variance (σ2
g,∞) and genetic correlation between mates (rg,∞),

and finally calculating the phenotypic correlation between mates:

r =
rg,∞

(
σ2
g,∞ + σ2

e

)
σ2
g,∞

. (92)
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2.2 Moment derivations

Assume a global distribution given by

Pr [G∗,G∗∗] ∝ exp
[
βG 2 +W

]
(93)

where G =
∑

j Gjuj and W =
∑

j Gjλj . Notice that we’re concatenating (G∗,G∗∗) into a single vector G,

and similarly for G and W , for economy of notation.

We have shown above that β is given by

β =
1 + 2rh20 −

√
1− 4rh20 (1− h20)

4σ2
g,0 (2 + rh20 − h20)

. (94)

The λ parameters are unknown and will be approximated below, based on the constraint

E [Gi] = qi. (95)

We will make repeated use of the following relation, for various X:

∂

∂ui
E [X] =

∂

∂ui

∑
G X exp

[
βG 2 +W

]∑
G exp [βG 2 +W ]

(96)

= E
[
∂X

∂ui

]
+

∑
G X

∂
∂ui

exp
[
βG 2 +W

]∑
G exp [βG 2 +W ]

− E [X]

∑
G

∂
∂ui

exp
[
βG 2 +W

]∑
G exp [βG 2 +W ]

(97)

= E
[
∂X

∂ui

]
+ 2βE [GiGX]− 2βE [GiG ]E [X] . (98)

2.2.1 Deriving λ from the first moment

Here we expand E [Gi] in ui, holding fixed all other parameters (u−i, λ, β). We then solve for the value of λi
that yields qi.

Zeroth term:

E [Gi]ui=0 =

∑
Gi

Gi exp [Giλi]
∑

G−i
exp

[
βG 2

−i +W−i

]∑
Gi

exp [Giλi]
∑

G−i
exp

[
βG 2

−i +W−i

] (99)

= tanhλi. (100)

First derivative:

∂

∂ui
E [Gi] = 2βE [G ]− 2βE [GiG ]E [Gi] . (101)
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At ui = 0, Gi is independent from G−i. Thus the first derivative becomes

∂

∂ui ui=0

E [Gi] = 2β
(
1− tanh2 λi

)
E [G ]ui=0 . (102)

Second derivative:

∂2

∂u2i
E [Gi] = 2β

d
dui

E [G ]− 2βE [GiG ]
d

dui
E [Gi]− 2βE [Gi]

d
dui

E [GiG ] (103)

= 4β2E
[
GiG

2
]
− 4β2E [Gi]E

[
G 2
]
+ 8β2E [Gi]E [GiG ]

2 − 8β2E [GiG ]E [G ] . (104)

At ui = 0 this becomes

∂2

∂u2i ui=0

E [Gi] = −8β2 tanhλi
(
1− tanh2 λi

)
E [G ]

2
ui=0 . (105)

Therefore we have the expansion

E [Gi] = tanhλi + 2β
(
1− tanh2 λi

)
E [G ]ui=0 ui − 4β2 tanhλi

(
1− tanh2 λi

)
E [G ]

2
ui=0 u

2
i +O

(
u3i
)
. (106)

Next we expand E [G ] in terms of ui:

∂

∂ui
E [G ] = E [Gi] + 2βE

[
GiG

2
]
− 2βE [GiG ]E [G ] . (107)

At ui = 0 this becomes

∂

∂ui ui=0

E [G ] = tanhλi + 2β tanhλi
(
E
[
G 2
]
ui=0

− E [G ]
2
ui=0

)
. (108)

Therefore

E [G ]ui=0 = E [G ]− tanhλiui − 2β tanhλi
(
E
[
G 2
]
− E [G ]

2
)
ui +O

(
u2i
)

(109)

where we have dropped the ui = 0 conditions on the RHS and absorbed the resulting error into the O
(
u2i
)

term.

Substituting Supplementary Equation (109) into Supplementary Equation (106) yields

E [Gi] = tanhλi + 2β
(
1− tanh2 λi

)
E [G ]ui − 2β tanhλi

(
1− tanh2 λi

)
u2i

− 4β2 tanhλi
(
1− tanh2 λi

)
E
[
G 2
]
u2i +O

(
u3i
)
. (110)
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Writing tanhλi = A+Bui + Cu2i +O
(
u3i
)

and substituting qi for E [Gi] yields

qi =O
(
u3i
)
+A+

(
B + 2β

(
1−A2

)
E [G ]

)
ui

+
(
C − 4βABE [G ]− 2βA

(
1−A2

)
− 4β2A

(
1−A2

)
E
[
G 2
])
u2i (111)

implying

A = qi (112)

B = −2β
(
1− q2i

)
E [G ] (113)

C = 2βqi
(
1− q2i

)
+ 4β2qi

(
1− q2i

) (
E
[
G 2
]
− 2E [G ]

2
)

(114)

and therefore

tanhλi = qi − 2β
(
1− q2i

)
E [G ]ui + 2βqi

(
1− q2i

)
u2i + 4β2qi

(
1− q2i

) (
E
[
G 2
]
− 2E [G ]

2
)
u2i +O

(
u3i
)
.

(115)

2.2.2 Second moments

Here we compute the second order expansion of he second moment in ui and uj about zero:

E [GiGj ]|ui,uj=0 =

∑
Gi

Gi exp [Giλi] ·
∑

Gj
Gj exp [Gjλj ] ·

∑
G−ij

exp
[
βG 2

−ij +W−ij

]∑
Gi

exp [Giλi] ·
∑

Gj
exp [Gjλj ] ·

∑
G−ij

exp
[
βG 2

−ij +W−ij

] (116)

= tanhλi tanhλj , (117)
∂

∂ui
E [GiGj ]

∣∣∣∣
ui,uj=0

= β2E
[
GiGjG

2
]
− 4β2E [GiGj ]E

[
G 2
]
+ 8β2E [GiGj ]E [GiG ]

2 − 8β2E [GiG ]E [GjG ]
∣∣∣
ui,uj=0

(118)

= −8β2 tanhλi tanhλj
(
1− tanh2 λi

)
E [G ]

2
ui,uj=0 , (119)

∂2

∂ui∂uj
E [GiGj ]

∣∣∣∣
ui,uj=0

= 2β
(
1− E [GiGj ]

2
)
+ 4β2E

[
G 2
]
− 4β2E [GiG ]

2 − 4β2E [GjG ]
2

+8β2E [GiG ]E [GjG ]E [GiGj ]− 4β2E [GiGj ]E
[
GiGjG

2
]∣∣

ui,uj=0
(120)

= 2β
(
1− tanh2 λi tanh2 λj

)
+ 4β2

(
1− tanh2 λi tanh2 λj

)
E
[
G 2
]
ui,uj=0

+ 4β2
(
2 tanh2 λi tanh2 λj − tanh2 λi − tanh2 λj

)
E [G ]

2
ui,uj=0 . (121)
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We now have the following expansion of the second moment:

E [GiGj ] =O
(
u3i , u

3
j

)
+ tanhλi tanhλj + 2β tanhλj

(
1− tanh2 λi

)
E [G ]ui,uj=0 ui

+ 2β tanhλi
(
1− tanh2 λj

)
E [G ]ui,uj=0 uj − 4β2 tanhλi tanhλj

(
1− tanh2 λi

)
E [G ]

2
ui,uj=0 u

2
i

− 4β2 tanhλi tanhλj
(
1− tanh2 λj

)
E [G ]

2
ui,uj=0 u

2
j + 2β

(
1− tanh2 λi tanh2 λj

)
uiuj

+ 4β2
(
1− tanh2 λi tanh2 λj

)
E
[
G 2
]
ui,uj=0

uiuj

+ 4β2
(
2 tanh2 λi tanh2 λj − tanh2 λi − tanh2 λj

)
E [G ]

2
ui,uj=0 uiuj . (122)

Generalizing the derivation of Supplementary Equation (109), we have

E [G ]ui,uj=0 =E [G ]− tanhλiui − tanhλjuj − 2β tanhλi
(
E
[
G 2
]
− E [G ]

2
)
ui

− 2β tanhλj
(
E
[
G 2
]
− E [G ]

2
)
uj +O

(
u2i , u

2
j

)
. (123)

Substituting this into Supplementary Equation (122) yields

E [GiGj ] = tanhλi tanhλj + 2β tanhλj
(
1− tanh2 λi

)
E [G ]ui + 2β tanhλi

(
1− tanh2 λj

)
E [G ]uj

− 2β tanhλi tanhλj
(
1− tanh2 λi

)
u2i − 4β2 tanhλi tanhλj

(
1− tanh2 λi

)
E
[
G 2
]
u2i

− 2β tanhλi tanhλj
(
1− tanh2 λj

)
u2j − 4β2 tanhλi tanhλj

(
1− tanh2 λj

)
E
[
G 2
]
u2j

+ 2β
(
1− tanh2 λi

) (
1− tanh2 λj

)
uiuj + 4β2

(
1− tanh2 λi

) (
1− tanh2 λj

)
E
[
G 2
]
uiuj +O

(
u3i , u

3
j

)
.

(124)

Finally, substituting Supplementary Equation (115) yields

E [GiGj ] = qiqj +
(
2β + 4β2var (G )

) (
1− q2i

) (
1− q2j

)
uiuj +O

(
u3i , u

3
j

)
. (125)

This can also be written

corr (Gi,Gj) = αiαj (126)

with

αi =
√
(2β + 4β2var (G )) (1− q2i )ui +O

(
u2i
)
. (127)

2.2.3 Third moments

Three distinct indices (E[GiGjGk]) We compute the second order expansion of E [GiGjGk] in ui, uj , uk

about 0:
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Zeroth term:

E [GiGjGk]|ui,uj ,uk=0 = tanhλi tanhλj tanhλk, (128)
∂

∂ui
E [GiGjGk]

∣∣∣∣
ui,uj ,uk=0

= 2βE [GjGkG ]− 2βE [GiG ]E [GiGjGk]|ui,uj ,uk=0 (129)

= 2β tanhλj tanhλk
(
1− tanh2 λi

)
E [G ]

∣∣
ui,uj ,uk=0

, (130)

∂2

∂u2i
E [GiGjGk]

∣∣∣∣
ui,uj ,uk=0

= 4β2
(
E
[
GiGjGkG

2
]
− E [GiGjGk]E

[
G 2
]

+2E [GiGjGk]E [GiG ]
2 − 2E [GiG ]E [GjGkG ]

)∣∣∣
ui,uj ,uk=0

(131)

= −8β2 tanhλi tanhλj tanhλk
(
1− tanh2 λi

)
E [G ]

2
∣∣∣
ui,uj ,uk=0

, (132)

∂2

∂ui∂uj
E [GiGjGk]

∣∣∣∣
ui,uj ,uk=0

= 2β tanhλk
(
1− tanh2 λi tanh2 λj

)
+ 4β2 tanhλk

(
1− tanh2 λi tanh2 λj

)
E
[
G 2
]

+4β2 tanhλk
(
2 tanh2 λi tanh2 λj − tanh2 λi − tanh2 λj

)
E [G ]

2
∣∣∣
ui,uj ,uk=0

.

(133)

We now have the following expansion of the third moment:

E [GiGjGk] = O
(
u3i , u

3
j , u

3
k

)
+ tanhλi tanhλj tanhλk

+ 2β tanhλj tanhλk
(
1− tanh2 λi

)
E [G ]ui,uj ,uk=0 ui

+ 2β tanhλi tanhλk
(
1− tanh2 λj

)
E [G ]ui,uj ,uk=0 uj

+ 2β tanhλi tanhλj
(
1− tanh2 λk

)
E [G ]ui,uj ,uk=0 uk

− 4β2 tanhλi tanhλj tanhλk
(
1− tanh2 λi

)
E [G ]

2
ui,uj ,uk=0 u

2
i

− 4β2 tanhλi tanhλj tanhλk
(
1− tanh2 λj

)
E [G ]

2
ui,uj ,uk=0 u

2
j

− 4β2 tanhλi tanhλj tanhλk
(
1− tanh2 λk

)
E [G ]

2
ui,uj ,uk=0 u

2
k

+ 2β tanhλk
(
1− tanh2 λi tanh2 λj

)
uiuj

+ 4β2 tanhλk
(
1− tanh2 λi tanh2 λj

)
E
[
G 2
]
ui,uj ,uk=0

uiuj

+ 4β2 tanhλk
(
2 tanh2 λi tanh2 λj − tanh2 λi − tanh2 λj

)
E [G ]

2
ui,uj ,uk=0 uiuj

+ 2β tanhλj
(
1− tanh2 λi tanh2 λk

)
uiuk

+ 4β2 tanhλj
(
1− tanh2 λi tanh2 λk

)
E
[
G 2
]
ui,uj ,uk=0

uiuk

+ 4β2 tanhλj
(
2 tanh2 λi tanh2 λk − tanh2 λi − tanh2 λk

)
E [G ]

2
ui,uj ,uk=0 uiuk

+ 2β tanhλi
(
1− tanh2 λj tanh2 λk

)
ujuk

+ 4β2 tanhλi
(
1− tanh2 λj tanh2 λk

)
E
[
G 2
]
ui,uj ,uk=0

ujuk

20



+ 4β2 tanhλi
(
2 tanh2 λj tanh2 λk − tanh2 λj − tanh2 λk

)
E [G ]

2
ui,uj ,uk=0 ujuk. (134)

Generalizing the derivation of Supplementary Equation (109), we have

E [G ]ui,uj ,uk=0 = E [G ]−
(
1 + 2β

(
E
[
G 2
]
− E [G ]

2
))

(tanhλiui + tanhλjuj + tanhλkuk) +O
(
u2i , u

2
j , u

2
k

)
.

(135)

Substituting this into Supplementary Equation (134) yields

E [GiGjGk] = tanhλi tanhλj tanhλk

+ 2β tanhλj tanhλk
(
1− tanh2 λi

)
E [G ]ui

+ 2β tanhλi tanhλk
(
1− tanh2 λj

)
E [G ]uj

+ 2β tanhλi tanhλj
(
1− tanh2 λk

)
E [G ]uk

− 2β tanhλi tanhλj tanhλk
(
1− tanh2 λi

) (
1 + 2βE

[
G 2
])
u2i

− 2β tanhλi tanhλj tanhλk
(
1− tanh2 λj

) (
1 + 2βE

[
G 2
])
u2j

− 2β tanhλi tanhλj tanhλk
(
1− tanh2 λk

) (
1 + 2βE

[
G 2
])
u2k

+ 2β tanhλk
(
1− tanh2 λi

) (
1− tanh2 λj

) (
1 + 2βE

[
G 2
])
uiuj

+ 2β tanhλj
(
1− tanh2 λi

) (
1− tanh2 λk

) (
1 + 2βE

[
G 2
])
uiuk

+ 2β tanhλi
(
1− tanh2 λj

) (
1− tanh2 λk

) (
1 + 2βE

[
G 2
])
ujuk

+O
(
u3i , u

3
j , u

3
k

)
. (136)

Substituting Supplementary Equation (115) yields

E [GiGjGk] =O
(
u3i , u

3
j , u

3
k

)
+ qiqjqk + qk

(
1− q2i

) (
1− q2j

) (
2β + 4β2var (G )

)
uiuj

+ qj
(
1− q2i

) (
1− q2k

) (
2β + 4β2var (G )

)
uiuk + qi

(
1− q2j

) (
1− q2k

) (
2β + 4β2var (G )

)
ujuk.

(137)

Notice the nontrivial terms match the expression for the second moment from Supplementary Equation

(125). Thus the third central moment is zero to the second degree in u:

E [(Gi − qi) (Gj − qj) (Gk − qk)] = E [GiGjGk]− qiE [GjGk]− qjE [GiGk]− qkE [GiGj ] + 2qiqjqk (138)

= O
(
u3i , u

3
j , u

3
k

)
. (139)

For all values of ui, uj , uk, the distribution of Gi,Gj ,Gk is fully determined by the distribution of G−i,j,k,

independent of m (Supplementary Equation (66)). Assuming the higher moments of G−i,j,k do not grow
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with m, an assumption we make going forward, we then have

E [(Gi − qi) (Gj − qj) (Gk − qk)] = O
(
m−3/2

)
. (140)

Two distinct indices (E[G2
i Gj ]) Let i, j be distinct indices. Using G2

i = 1 and substituting Supplementary

Equation (125) yields

E
[
(Gi − qi)

2
(Gj − qj)

]
= E

[
G2
i Gj

]
− 2qiE [GiGj ] + q2i E [Gj ]− qjE

[
G2
i

]
+ 2qiqjE [Gi]− q2i qj (141)

= −2qi (E [GiGj ]− qiqj) (142)

= −2qi
(
1− q2i

) (
1− q2j

) (
2β + 4β2var (G )

)
uiuj +O

(
u3i , u

3
j

)
(143)

= O
(
m−1

)
. (144)

2.2.4 Fourth moments

Four distinct indices (E[GiGjGkGl]) Let i, j, k, l be four distinct indices. We again expand E [GiGjGkGl]

in ui, uj , uk, ul.

Zeroth term:

E [GiGjGkGl]|ui,...,ul=0 = tanhλi tanhλj tanhλk tanhλl, (145)
∂

∂ui
E [GiGjGkGl]

∣∣∣∣
ui,...,ul=0

=2β tanhλj tanhλk tanhλl
(
1− tanh2 λi

)
E [G ]ui,...,ul=0 , (146)

∂2

∂u2i
E [GiGjGkGl]

∣∣∣∣
ui,...,ul=0

=− 8β2 tanhλi tanhλj tanhλk tanhλl
(
1− tanh2 λi

)
E [G ]

2
ui,...,ul=0 , (147)

∂2

∂ui∂uj
E [GiGjGkGl]

∣∣∣∣
ui,...,ul=0

=2β tanhλk tanhλl
(
1− tanh2 λi tanh2 λj

)
+ 4β2 tanhλk tanhλl

(
1− tanh2 λi tanh2 λj

)
E
[
G 2
]
ui,...,ul=0

+ 4β2 tanhλk tanhλl
(
2 tanh2 λi tanh2 λj − tanh2 λi − tanh2 λj

)
E [G ]

2
ui,...,ul=0 .

(148)

We now have the following expansion of the fourth moment:

E [GiGjGkGl] = O
(
u3i , u

3
j , u

3
k, u

3
l

)
+ tanhλi tanhλj tanhλk tanhλl

+ 2β tanhλj tanhλk tanhλl
(
1− tanh2 λi

)
E [G ]ui,...,ul=0 ui

+ 2β tanhλi tanhλk tanhλl
(
1− tanh2 λj

)
E [G ]ui,...,ul=0 uj

+ 2β tanhλi tanhλj tanhλl
(
1− tanh2 λk

)
E [G ]ui,...,ul=0 uk

+ 2β tanhλi tanhλj tanhλk
(
1− tanh2 λl

)
E [G ]ui,...,ul=0 ul
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− 4β2 tanhλi tanhλj tanhλk tanhλl
(
1− tanh2 λi

)
E [G ]

2
ui,...,ul=0 u

2
i

− 4β2 tanhλi tanhλj tanhλk tanhλl
(
1− tanh2 λj

)
E [G ]

2
ui,...,ul=0 u

2
j

− 4β2 tanhλi tanhλj tanhλk tanhλl
(
1− tanh2 λk

)
E [G ]

2
ui,...,ul=0 u

2
k

− 4β2 tanhλi tanhλj tanhλk tanhλl
(
1− tanh2 λl

)
E [G ]

2
ui,...,ul=0 u

2
l

+ 2β tanhλk tanhλl
(
1− tanh2 λi tanh2 λj

)
uiuj

+ 4β2 tanhλk tanhλl
(
1− tanh2 λi tanh2 λj

)
E
[
G 2
]
ui,...,ul=0

uiuj

+ 4β2 tanhλk tanhλl
(
2 tanh2 λi tanh2 λj − tanh2 λi − tanh2 λj

)
E [G ]

2
ui,...,ul=0 uiuj

+ 2β tanhλj tanhλl
(
1− tanh2 λi tanh2 λk

)
uiuk

+ 4β2 tanhλj tanhλl
(
1− tanh2 λi tanh2 λk

)
E
[
G 2
]
ui,...,ul=0

uiuk

+ 4β2 tanhλj tanhλl
(
2 tanh2 λi tanh2 λk − tanh2 λi − tanh2 λk

)
E [G ]

2
ui,...,ul=0 uiuk

+ 2β tanhλj tanhλk
(
1− tanh2 λi tanh2 λl

)
uiul

+ 4β2 tanhλj tanhλk
(
1− tanh2 λi tanh2 λl

)
E
[
G 2
]
ui,...,ul=0

uiul

+ 4β2 tanhλj tanhλk
(
2 tanh2 λi tanh2 λl − tanh2 λi − tanh2 λl

)
E [G ]

2
ui,...,ul=0 uiul

+ 2β tanhλi tanhλl
(
1− tanh2 λj tanh2 λk

)
ujuk

+ 4β2 tanhλi tanhλl
(
1− tanh2 λj tanh2 λk

)
E
[
G 2
]
ui,...,ul=0

ujuk

+ 4β2 tanhλi tanhλl
(
2 tanh2 λj tanh2 λk − tanh2 λj − tanh2 λk

)
E [G ]

2
ui,...,ul=0 ujuk

+ 2β tanhλi tanhλk
(
1− tanh2 λj tanh2 λl

)
ujul

+ 4β2 tanhλi tanhλk
(
1− tanh2 λj tanh2 λl

)
E
[
G 2
]
ui,...,ul=0

ujul

+ 4β2 tanhλi tanhλk
(
2 tanh2 λj tanh2 λl − tanh2 λj − tanh2 λl

)
E [G ]

2
ui,...,ul=0 ujul

+ 2β tanhλi tanhλj
(
1− tanh2 λk tanh2 λl

)
ukul

+ 4β2 tanhλi tanhλj
(
1− tanh2 λk tanh2 λl

)
E
[
G 2
]
ui,...,ul=0

ukul

+ 4β2 tanhλi tanhλj
(
2 tanh2 λk tanh2 λl − tanh2 λk − tanh2 λl

)
E [G ]

2
ui,...,ul=0 ukul. (149)

Generalizing the derivation of Supplementary Equation (109), we have

E [G ]ui,...,ul=0 =O
(
u2i , u

2
j , u

2
k, u

2
l

)
+ E [G ]

−
(
1 + 2β

(
E
[
G 2
]
− E [G ]

2
))

(tanhλiui + tanhλjuj + tanhλkuk + tanhλlul) . (150)

Substituting this into Supplementary Equation (149) yields

E [GiGjGkGl] = O
(
u3i , u

3
j , u

3
k, u

3
l

)
+ tanhλi tanhλj tanhλk tanhλl

+ 2β tanhλj tanhλk tanhλl
(
1− tanh2 λi

)
E [G ]ui
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+ 2β tanhλi tanhλk tanhλl
(
1− tanh2 λj

)
E [G ]uj

+ 2β tanhλi tanhλj tanhλl
(
1− tanh2 λk

)
E [G ]uk

+ 2β tanhλi tanhλj tanhλk
(
1− tanh2 λl

)
E [G ]ul

− 2β tanhλi tanhλj tanhλk tanhλl
(
1− tanh2 λi

) (
1 + 2βE

[
G 2
])
u2i

− 2β tanhλi tanhλj tanhλk tanhλl
(
1− tanh2 λj

) (
1 + 2βE

[
G 2
])
u2j

− 2β tanhλi tanhλj tanhλk tanhλl
(
1− tanh2 λk

) (
1 + 2βE

[
G 2
])
u2k

− 2β tanhλi tanhλj tanhλk tanhλl
(
1− tanh2 λl

) (
1 + 2βE

[
G 2
])
u2l

+ 2β tanhλk tanhλl
(
1− tanh2 λi

) (
1− tanh2 λj

) (
1 + 2βE

[
G 2
])
uiuj

+ 2β tanhλj tanhλl
(
1− tanh2 λi

) (
1− tanh2 λk

) (
1 + 2βE

[
G 2
])
uiuk

+ 2β tanhλj tanhλk
(
1− tanh2 λi

) (
1− tanh2 λl

) (
1 + 2βE

[
G 2
])
uiul

+ 2β tanhλi tanhλl
(
1− tanh2 λj

) (
1− tanh2 λk

) (
1 + 2βE

[
G 2
])
ujuk

+ 2β tanhλi tanhλk
(
1− tanh2 λj

) (
1− tanh2 λl

) (
1 + 2βE

[
G 2
])
ujul

+ 2β tanhλi tanhλj
(
1− tanh2 λk

) (
1− tanh2 λl

) (
1 + 2βE

[
G 2
])
ukul. (151)

Substituting Supplementary Equation (115) yields

E [GiGjGkGl] = O
(
u3i , u

3
j , u

3
k, u

3
l

)
+ qiqjqkql

+ 2βqkql
(
1− q2i

) (
1− q2j

) (
1 + 2βvar

(
G 2
))
uiuj

+ 2βqjql
(
1− q2i

) (
1− q2k

) (
1 + 2βvar

(
G 2
))
uiuk

+ 2βqjqk
(
1− q2i

) (
1− q2l

) (
1 + 2βvar

(
G 2
))
uiul

+ 2βqiql
(
1− q2j

) (
1− q2k

) (
1 + 2βvar

(
G 2
))
ujuk

+ 2βqiqk
(
1− q2j

) (
1− q2l

) (
1 + 2βvar

(
G 2
))
ujul

+ 2βqiqj
(
1− q2k

) (
1− q2l

) (
1 + 2βvar

(
G 2
))
ukul. (152)

As with the third moment, the nontrivial terms here match the expression for the second moment from

Supplementary Equation (125). Together with Supplementary Equation (139), this implies the fourth central

moment is zero to second degree in u:

E [(Gi − qi) (Gj − qj) (Gk − qk) (Gl − ql)] =E [GiGjGkGl]− qiE [(Gj − qj) (Gk − qk) (Gl − ql)]− qjE [(Gi − qi) (Gk − qk) (Gl − ql)]

− qkE [(Gi − qi) (Gj − qj) (Gl − ql)]− qlE [(Gi − qi) (Gj − qj) (Gk − qk)]

− qiqjE [GkGl]− qiqkE [GjGl]− qiqlE [GkGj ]− qjqkE [GiGl]− qjqlE [GiGk]

− qkqlE [GiGj ] + 5qiqjqkql (153)
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=O
(
u3i , u

3
j , u

3
k, u

3
l

)
= O

(
m−3/2

)
. (154)

Mixed fourth moments Here we consider central fourth moments with repeated indices. These reduce

to lower-order moments using G2
i = 1.

Let i, j, k be any three distinct indices. Simplifying and then substituting Supplementary Equations (125)

and (137) yields

E
[
(Gi − qi)

2
(Gj − qj) (Gk − qk)

]
=E

[
G2
i GjGk

]
− 2qiE [GiGjGk] + q2i E [GjGk]− qjE

[
G2
i Gk

]
+ 2qiqjE [GiGk]− qkE

[
G2
i Gj

]
+ 2qiqkE [GiGj ] + qjqkE

[
G2
i

]
− 3q2i qjqk

(155)

=
(
1− q2i

) (
1− q2j

) (
1− q2k

) (
2β + 4β2var (G )

)
ujuk +O

(
u3i , u

3
j , u

3
k

)
(156)

=O
(
m−1

)
. (157)

Now consider (Gi − qi)
3
(Gj − qj):

E
[
(Gi − qi)

3
(Gj − qj)

]
= E

[
G3
i Gj

]
− 3qiE

[
G2
i Gj

]
+ 3q2i E [GiGj ]− q3i E [Gj ]

− qjE
[
G3
i

]
+ 3qiqjE

[
G2
i

]
− 3q2i qjE [Gi] + q3i qj (158)

=
(
1 + 3q2i

)
(E [GiGj ]− qiqj) (159)

=
(
1− q2i

) (
1− q2j

) (
1 + 3q2i

) (
2β + 4β2var (G )

)
uiuj +O

(
u3i , u

3
j

)
(160)

= O
(
m−1

)
. (161)

Last, consider (Gi − qi)
2
(Gj − qj)

2:

E
[
(Gi − qi)

2
(Gj − qj)

2
]
= E

[
G2
i G2

j

]
− 2qjE

[
G2
i Gj

]
+ q2jE

[
G2
i

]
− 2qiE

[
GiG2

j

]
+ 4qiqjE [GiGj ]− 2qiq

2
jE [Gi] + q2i E

[
G2
j

]
− 2q2i qjE [Gj ] + q2i q

2
j (162)

=
(
1− q2i

) (
1− q2j

)
+ 4qiqj (E [GiGj ]− qiqj) (163)

=
(
1− q2i

) (
1− q2j

)
+ 4qiqj

(
1− q2i

) (
1− q2j

) (
2β + 4β2var (G )

)
uiuj +O

(
u3i , u

3
j

)
.

(164)

Therefore the corresponding standardized moment is bound as

E

[
(Gi − qi)

2

1− q2i

(Gj − qj)
2

1− q2j

]
= 1 + 4qiqj

(
2β + 4β2var (G )

)
uiuj +O

(
u3i , u

3
j

)
(165)
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= 1 +O
(
m−1

)
. (166)

2.3 The limiting spectral distribution of covariance matrices for a class of ran-
dom matrices with dependent entries

Here we establish the limiting spectral distribution for a class of random matrices with dependent entries to

which our matrix of standardized genotypes Z belongs. For simplicity, we will assume that the equilibrium

covariances among all causal variants is constant, though our results are readily extended to the general case

where E[{n−1ZTZ}ij ] = O(1/m) for all i, j 6= i.

2.3.1 Introduction and primary result

For an n× n Hermitian matrix A, we let λ1(A), . . . , λn(A) ∈ R denote the eigenvalues of A. The empirical

spectral distribution (ESD) FA of A is defined as

FA(x) :=
1

n
|{1 ≤ i ≤ n : λi(A) ≤ x}| , (167)

where |E| denotes the cardinality of the finite set E. The Marčenko–Pastur distribution FMP
τ with parameter

τ > 0 is the probability distribution function with density

fMP
τ (x) :=

 1
2πτx

√
(b− x)(x− a), if a ≤ x ≤ b,

0, otherwise,
(168)

and a point mass 1− 1/τ at the origin if τ > 1, where a := (1−
√
τ)2 and b := (1 +

√
τ)2.

Let z ∈ Rp be a random vector. We let Z be an n × p matrix whose rows are independent and identically

distributed (iid) copies of z. We will be interested in the eigenvalues of 1
pZZ

T . We view n as a large

asymptotic parameter tending to infinity; p and m will be two additional parameters which we assume tend

to infinity with n. Asymptotic notation (such as O, o) will be used under the assumption that n,m, p→ ∞.

For the model under consideration, we make the following assumptions regarding the random vector z. The

random vector z has mean zero and covariance matrix

Σ :=

Σ′ 0

0 Ip−m

 , (169)

where Σ′ is an m×m matrix with entries

Σ′
ij :=

 2µ(m), if i 6= j,

1 + µ(m), if i = j.
(170)
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Here In denotes the n × n identity matrix. Additionally, we assume µ(m) = O(1/m). We also assume the

following about the entries of z = (zi)
p
i=1:

1. There exists a constant κ > 0 so that sup1≤i≤p |zi| ≤ κ with probability 1.

2. E[z2i z2j ] = 1 + o(1) uniformly for all distinct i, j.

3. E[z3i zj ] = o(1) uniformly for all distinct i, j.

4. One has

E[zizjzkzl] =

 o
(

1
m

)
, if |{i, j, k, l}| = 4,

o
(

1√
m

)
, if |{i, j, k, l}| = 3,

(171)

uniformly in i, j, k, l.

Theorem 1. Suppose n
p → τ ∈ (0,∞) as n → ∞ and m ≥ cp for some constant c > 0. Then, under the

assumptions above, the ESD F
1
pZZT

of 1
pZZ

T converges almost surely to the Marčenko–Pastur distribution

FMP
τ as n→ ∞.

The remainder of this section is devoted to the proof of Theorem 1. Throughout, we assume m, n, p, z, and

Z satisfy the assumptions of Theorem 1.

2.3.2 Notation and overview

In denotes the n×n identity matrix. Often we will simply write I when the size can be deduced from context.

For a matrix A, we let ‖A‖ denote the spectral (operator) norm of A and ‖A‖2 denote the Hilbert–Schmidt

(Frobenius) norm of A defined by

‖A‖2 :=
√

tr (AA∗) =
√

tr (A∗A), (172)

where A∗ denotes the conjugate transpose of A. We will exploit the fact that the spectral norm of A is an

upper bound for the spectral norm of any sub-matrix of A.

For α ∈ C+ := {w ∈ C : Im(w) > 0}, we define the resolvent of 1
pZZ

T as

R(α) :=

(
1

p
ZZT − αI

)−1

. (173)

Z(k) is the (n − 1) × p matrix constructed from Z by removing the k-th row. Let R(k) be the resolvent of
1
pZ

(k)Z(k)T , i.e.,

R(k)(α) :=

(
1

p
Z(k)Z(k)T − αI

)−1

, α ∈ C+. (174)
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Define sn to be the Stieltjes transform of the ESD F
1
pZZT

. In other words,

sn(α) :=
1

n
trR(α), α ∈ C+. (175)

We let s be the Stieltjes transform of FMP
τ . From Chapter 3 of Bai and Silverstein7 it follows that s satisfies

the equation

s(α) =
1

1− α− τ − ταs(α)
, α ∈ C+. (176)

We prove Theorem 1 by showing that sn converges to s as n tends to infinity. This is a standard proof method

in random matrix theory (see e.g. Bai and Siliverstein7 for details). However, the dependence between the

entries introduces new difficulties in establishing this convergence. The main technical advance in this work

involves dealing with the dependence amongst the entries.

In Section 2.3.3 we present the main tools from linear algebra and probability theory that are required for the

proof. A concentration inequality is presented in Section 2.3.4 which allows us to pass between the Stieltjes

transform and its expected value. Section 2.3.5 contains a version of the Hanson–Wright inequality for the

rows of Z; this section is the main technical tool for dealing with the dependence amongst the entries. We

finally complete the proof of Theorem 1 in Section 2.3.6

2.3.3 Tools from probability theory and linear algebra

We begin by introducing some tools from probability theory and linear algebra.

Lemma 2. For any α ∈ C+ and any 1 ≤ k ≤ n,

∣∣∣trR(α)− trR(k)(α)
∣∣∣ ≤ 1

Im(α)
. (177)

Proof. This follows from equation (A.1.12) in Bai and Silverstein7.

Lemma 3. If µ is a probability measure supported on [0,∞) and sµ is its Stieltjes transform defined by

sµ(α) :=

∫ ∞

0

1

x− α
dµ(x), α ∈ C+, (178)

then |sµ(α)| ≤ 1
Im(α) and

Imsµ(α) > 0, Im(αsµ(α)) ≥ 0 (179)

for all α ∈ C+.
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Proof. The first bound follows from the triangle inequality:

|sµ(α)| ≤
∫ ∞

0

1

|x− α|
dµ(x) ≤

∫ ∞

0

1

Imαdµ(x) =
1

Imα. (180)

For the other bounds, since

sµ(α) =

∫ ∞

0

x− ᾱ

|x− α|2
dµ(x), (181)

it follows that Imsµ(α) > 0. Similarly,

Im(αsµ(α)) = Im(α)

∫ ∞

0

x

|x− α|2
dµ(x) ≥ 0, (182)

which completes the proof.

Lemma 4 (Stability). Suppose µ is a probability measure supported on [0,∞) and sµ is its Stieltjes transform

defined in Supplementary Equation (178). If

sµ(α) =
1

1− α− τ − ταsµ(α)
+ ε (183)

for some α ∈ C+, some ε ∈ C, and some τ > 0, then

|sµ(α)− s(α)| ≤ |ε|
Imα |1− α− τ − ταsµ(α)|, (184)

where s is the Stieltjes transform of the Marčenko–Pastur distribution function FMP
y (see Supplementary

Equation (176)).

Proof. Using Supplementary Equations (176) and (183), we have

− ταs2µ(α) + sµ(α)(1− α− τ)− 1 = ε(1− α− τ − ταsµ(α)) (185)

and

− ταs2(α) + s(α)(1− α− τ)− 1 = 0. (186)

Subtracting the two equations gives

|sµ(α)− s(α)|| − τα(sµ(α) + s(α)) + 1− α− τ | = |ε||1− α− τ − ταsµ(α)|. (187)

In view of Lemma 3,

| − τα(sµ(α) + s(α)) + 1− α− τ | ≥ τ Im(α(sµ(α) + s(α))) + Im(α) ≥ Im(α), (188)
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and the conclusion follows.

Throughout the proof, we will utilize the resolvent identity:

A−1 −B−1 = A−1(B −A)B−1, (189)

which holds for invertible matrices A and B. We will also use the bound

‖(A− αI)−1‖ ≤ 1

Im(α)
(190)

which follows from the spectral theorem and holds for any Hermitian matrix A and any α ∈ C+. We will

also need the following bound.

Lemma 5. Let A be an n× p matrix. Then

A∗(AA∗ − αI)−1A = (A∗A− αI)−1A∗A (191)

for all α ∈ C+. In addition,

‖A∗(AA∗ − αI)−1A‖ ≤ 1 +
|α|

Imα (192)

for all α ∈ C+.

Proof. For |α| > ‖AA∗‖ the Neumann series for the resolvent (AA∗ − αI)−1 gives

(AA∗ − αI)−1 = − 1

α
I −

∞∑
k=1

(AA∗)k

αk+1
. (193)

It follows that

A∗(AA∗ − αI)−1A = −A
∗A

α
−

∞∑
k=1

(A∗A)kA∗A

αk+1
= (A∗A− αI)−1A∗A. (194)

This establishes Supplementary Equation (191) for α ∈ C+ with |α| > ‖AA∗‖. The identity can be extended

to all of C+ by analytic continuation since the entries of the resolvent are analytic in C+. Alternatively,

Supplementary Equation (191) can be derived using the singular value decomposition for A.

The bound in Supplementary Equation (192) can be established using Supplementary Equation (191). In-

deed, by Supplementary Equation (191)

A∗(AA∗ − αI)−1A = (A∗A− αI)−1A∗A (195)

= (A∗A− αI)−1(A∗A− αI + αI) (196)
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= I + α(A∗A− αI)−1. (197)

We conclude that

‖A∗(AA∗ − αI)−1A‖ ≤ 1 +
α

Im(α)
(198)

by the triangle inequality and Supplementary Equation (190).

We will also take advantage of the bound

|tr (A)| ≤ rank (A)‖A‖, (199)

which holds for any square matrix A and follows from Corollary (A.12) in Bai and Silverstein7.

2.3.4 Concentration

Recall the Stieltjes transform sn defined in Supplementary Equation (175). The following results show that

the Stieltjes transform sn concentrates around its expected value E[sn].

Lemma 6. For any α ∈ C+ and any t > 0,

P(|sn(α)− E[sn(α)]| > t) ≤ C exp
(
−cnt2(Imα)2

)
, (200)

where C, c > 0 are absolute constants.

Proof. Let Z̃(k) be formed from the matrix Z by replacing the k-th row with zeros. Let R̃(k) be the resolvent

of Z̃(k)Z̃(k)T defined by

R̃(k)(α) :=
(
Z̃(k)Z̃(k)T − αI

)−1

, α ∈ C+. (201)

Then for any 1 ≤ k ≤ n,

∣∣∣trR(α)− tr R̃(k)(α)
∣∣∣ ≤ ∣∣∣trR(α)− trR(k)(α)

∣∣∣+ ∣∣∣trR(k)(α)− tr R̃(k)(α)
∣∣∣ . (202)

The first term on the right-hand side can be bounded using Lemma 2. The second term can be controlled

using the fact that Z(k)Z(k)T and Z̃(k)Z̃(k)T have the same eigenvalues except Z̃(k)Z̃(k)T has one additional

zero eigenvalue. In other words,

∣∣∣trR(k)(α)− tr R̃(k)(α)
∣∣∣ = ∣∣∣∣ 1α

∣∣∣∣ ≤ 1

Im(α)
. (203)

We conclude that ∣∣∣trR(α)− tr R̃(k)(α)
∣∣∣ ≤ 2

Im(α)
(204)
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for any 1 ≤ k ≤ n. Now since trR(α) is a function of the independent random vectors z1, . . . , zn, McDiarmid’s

inequality (see8 or Theorem 2.1.10 in9) implies that

P(|trR(α)− EtrR(α)| > t) ≤ C exp
(
−c(Imα)2 t

2

n

)
(205)

for any t > 0, where C, c > 0 are absolute constants. The claim now follows by rescaling.

Lemma 7. Define the domain

S :=

{
α ∈ C+ : 1 ≥ Im(α) ≥ logn

n1/4
,−n ≤ Re(α) ≤ n

}
. (206)

One has

P
(

sup
α∈S

|sn(α)− E[sn(α)]| > 2n−1/4

)
≤ C exp

(
−c log2 n

)
, (207)

where C, c > 0 are absolute constants.

We will utilize an ε-net in order to prove Lemma 7.s

Definition (Nets). Let X be a subset of C and ε > 0. A subset N of X is called an ε-net of X if every

point x ∈ X can be approximated within ε by some point y ∈ N , i.e. so that |x− y| ≤ ε.

Proof of Lemma 7. By Lemma 6,

sup
α∈S

P
(
|sn(α)− E[sn(α)]| > n−1/4

)
≤ C ′ exp

(
−c′ log2 n

)
, (208)

where C ′, c′ > 0 are absolute constants. The goal is to extend this bound to simultaneously hold for all

α ∈ S. We will use a net to do so. Let N be a n−1-net of S. A simple volume argument (see for instance10)

shows that N can be chosen so that

|N | ≤ C0n
C0 (209)

for an absolute constant C0 > 0. By the union bound and Supplementary Equation (208), we find

P
(

sup
α∈N

|sn(α)− E[sn(α)]| > n−1/4

)
≤ C exp(−c log2 n), (210)

where C, c > 0 are absolute constants.

We now wish to extend this bound from N to S. To this end, suppose there exists α ∈ S so that |sn(α) −

Esn(α)| > 2n−1/4. Then there exists α′ ∈ N such that |α − α′| ≤ 1
n . Thus, by the resolvent identity in

Supplementary Equation (189), Supplementary Equation (199), and Supplementary Equation (190), we have∣∣∣∣ 1n trR(α)− 1

n
trR(α′)

∣∣∣∣ ≤ |α− α′|‖R(α)‖‖R(α′)‖ ≤ |α− α′|
Im(α)Im(α′)

. (211)
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The same bound holds for the expected value (by the same argument) and so we deduce that

|(sn(α)− E[sn(α))]− (sn(α
′)− E[sn(α′))]| ≤ 2

√
n

log2 n
|α− α′| < n−1/4 (212)

for n sufficiently large since |α − α′| ≤ n−1. Here we bounded the imaginary parts of α and α′ from

below by n−1/4 logn using the definition of the set S. Since |sn(α) − Esn(α)| > 2n−1/4, it follows that

|sn(α′)− Esn(α′)| > n−1/4. Summarizing, we have shown that

P
(

sup
α∈S

|sn(α)− E[sn(α)]| > 2n−1/4

)
≤ P

(
sup
α∈N

|sn(α)− E[sn(α)]| > n−1/4

)
. (213)

Thus, the claim follows from Supplementary Equation (210).

2.3.5 Hanson–Wright inequality

Recall that z is a random vector in Rp with mean zero, and the rows of Z are iid copies of z. In addition, Σ

is the covariance matrix of z. The Hanson–Wright inequality is a concentration inequality which shows that

the quadratic form zTAz concentrates around its expected value, where A here is an arbitrary deterministic

p × p matrix. If the entries of z were independent, the bound would follow from more classical results

such as11,12. In the model under consideration the entries of z are dependent, and this dependence requires

different techniques to deal with the quadratic form zTAz. We begin first with its expected value.

Lemma 8. For a deterministic p× p matrix A,

1

p
E[zTAz] =

1

p
tr (AΣ) = 1

p
tr (A) +O(m−1‖A‖). (214)

Proof. We denote z = (zi)
p
i=1. Then

E[zTAz] =
p∑

i,j=1

AijE[zizj ] =
p∑

i,j=1

AijΣij = tr (AΣT ) = tr (AΣ). (215)

This establishes the first equality in Supplementary Equation (214).

We now turn to the second equality in Supplementary Equation (214). Recall that

Σ =

Σ′ 0

0 Ip−m

 , (216)

where Σ′ is the m×m matrix defined in Supplementary Equation (170). We similarly decompose A in block
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form as

A =

A1 A2

A3 A4

 , (217)

where A1 is m × m and A4 is (p − m) × (p − m). Then tr (AΣ) = tr (A1Σ
′) + tr (A4). We rewrite Σ′ =

2µ(m)J + (1− µ(m))I, where J is the all-ones matrix. So, we obtain

tr (A1Σ
′) = (1− µ(m))tr (A1) + 2µ(m)tr (A1J). (218)

Since J is rank one, we can use Supplemental Equation (199) to bound |tr (A1J)| ≤ ‖A1‖‖J‖ ≤ ‖A‖‖J‖. A

simple computation shows that ‖J‖ = m, and using µ(m) = O(m−1), we conclude that

1

p
tr (A1Σ

′) =
1

p
tr (A1) +O(m−1‖A‖), (219)

where we used that m ≤ p. Putting these bounds together yields

1

p
tr (AΣ) = 1

p
tr (A1) +

1

p
tr (A4) +O(m−1‖A‖) = 1

p
tr (A) +O(m−1‖A‖), (220)

which completes the proof.

Our main concentration bound is the following.

Lemma 9. For a deterministic p× p complex symmetric matrix A with ‖A‖ = O(1),

E
∣∣∣∣1pzTAz − 1

p
E[zTAz]

∣∣∣∣ = o(1). (221)

Proof. By the Cauchy–Schwarz inequality, it suffices to show that

E
∣∣∣∣1pzTAz − 1

p
E[zTAz]

∣∣∣∣2 = o(1). (222)

Identifying the left-hand side as the variance of 1
pz

TAz and applying Lemma 8, it suffices to show that

E
∣∣∣∣1pzTAz

∣∣∣∣2 =

∣∣∣∣1p tr (A)
∣∣∣∣2 + o(1). (223)

We expand the left-hand side as

E
∣∣∣∣1pzTAz

∣∣∣∣2 =
1

p2

p∑
i,j,k,l=1

AijAklE[zizjzkzl], (224)
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where we have denoted z = (zi)
p
i=1. Decompose the sum as

1

p2

p∑
i,j,k,l=1

AijAklE[zizjzkzl] = S1 + S2 + S3 + S4, (225)

where

Sr :=
1

p2

∑
AijAklE[zizjzkzl] (226)

and the sum is over all 1 ≤ i, j, k, l ≤ p such that |{i, j, k, l}| = r.

We will show that S2 contains the main contribution and the remaining terms Sr, r 6= 2 can be appropriately

bounded. We begin by bounding S3 and S4 together. Let Λ be a p2 × p2 matrix, indexed by {(i, j) : 1 ≤

i, j ≤ p} and defined by

Λ(i,j),(k,l) =

 E[zizjzkzl] if |{i, j, k, l}| ≥ 3,

0, otherwise.
(227)

Then

S3 + S4 =
1

p2

p∑
i,j,k,l=1

AijAklΛ(i,j),(k,l) (228)

can be identified as a quadratic form in the matrix Λ. Thus, we can bound (see for instance13)

|S3 + S4| ≤
1

p2
‖A‖22‖Λ‖2. (229)

Trivially, by Supplemental Equation (199), we have the bound

1

p
‖A‖22 ≤ ‖A‖2. (230)

Additionally, by assumption (4) and the fact that m ≥ cp,

1

p2
‖Λ‖22 =

1

p2

∑
|{i,j,k,l}|≥3

|E[zizjzkzl]|2 = o(1). (231)

Thus, we conclude that |S3 + S4| = o(1).

For S1, we easily bound

|S1| ≤
1

p2

p∑
i=1

E[z4i ]|Aii|2 ≤ κ4

p
‖A‖2 = o(1) (232)

using assumption 1 on page 27.

It remains to control the terms from S2. When i = j and k = l 6= i, the sum in S2 gives (using assumption

2 on page 27)
1

p2

∑
AijAklE[zizjzkzl] =

(
1

p
tr (A)

)2

+ o(1), (233)
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which is the main contribution. Thus, we need to show that the other terms in S2 give negligible contribution.

Indeed, we have ∣∣∣∣∣S2 −
(
1

p
trA

)2
∣∣∣∣∣ ≤ C

1

p2
‖A‖22 + o(1) (234)

by assumptions 2 and 3 on page 27. Here C > 0 is a constant. Using Supplemental Equation (230), we

conclude that ∣∣∣∣∣S2 −
(
1

p
trA

)2
∣∣∣∣∣ = o(1), (235)

and the proof is complete.

2.3.6 Proof of Theorem 1

We are now in a position to complete the proof of Theorem 1. We let z1, . . . , zn denote the rows of Z (which

are iid copies of z). Set τn := n
p and recall that τn → τ ∈ (0,∞).

By the Schur complement formula (see for instance7, it follows that

sn(α) =
1

n
trR(α) (236)

=
1

n

n∑
k=1

1
1
pzkz

T
k − α− 1

p2 zkZ(k)TR(k)(α)Z(k)zTk
=

1

n

n∑
k=1

1

ak
, (237)

where

ak :=
1

p
zkz

T
k − α− 1

p2
zkZ

(k)TR(k)(α)Z(k)zTk . (238)

Moreover, it follows (see for example page 472 of7) that

|ak| ≥ Im(α). (239)

So far we have considered arbitrary α ∈ C+, but we now restrict ourselves to

α ∈ Q := {w ∈ C+ : Re(w) = 0, 1/2 ≤ Im(w) ≤ 1}. (240)

We have, for any α ∈ Q, ∣∣∣∣∣Esn(α)− 1

n

n∑
k=1

1

E[ak]

∣∣∣∣∣ ≤ 1

n

n∑
k=1

E
∣∣∣∣ 1ak − 1

E[ak]

∣∣∣∣ (241)

≤ 1

n

n∑
k=1

E
[
|ak − E[ak]|
(Im(α))2

]
(242)

≤ 4E [|a1 − E[a1]|] , (243)
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where we used Supplemental Equation (239) and the fact that Im(α) ≥ 1/2 for any α ∈ Q. In the last

inequality we also used that the random variables ak are identically distributed since the rows of Z are iid.

Letting

A := I − 1

p
Z(1)TR(1)(α)Z(1), (244)

we note that

a1 − E[a1] =
1

p
z1Az

T
1 − 1

p
E[z1AzT1 ]. (245)

By Supplemental Equation (192), ‖A‖ ≤ 3 for all α ∈ Q. In addition, A is independent of z1. Let E1[·]

denote the expectation with respect to only the first row z1. Our goal is to now show that

E [|a1 − E[a1]|] = o(1) (246)

uniformly for α ∈ Q. Indeed, using the triangle inequality and Lemma 9 (by conditioning on the matrix A),

we see that

E [|a1 − E[a1]|] ≤ E [|a1 − E1[a1]|] + E [|E1[a1]− E[a1]|] = o(1) + E [|E1[a1]− E[a1]|] (247)

uniformly for α ∈ Q. To bound the second term we note that

E [|E1[a1]− E[a1]|] = E
[∣∣∣∣1p trA− E

[
1

p
trA

]∣∣∣∣]+ o(1) (248)

due to Lemma 8 and Fubini’s theorem. By the cyclic property of the trace

|trA− E[trA]| = |α|
∣∣∣trR(1)(α)− E[trR(1)(α)]

∣∣∣ (249)

since
1

p
R(1)Z(1)Z(1)T = R(1)

(
1

p
Z(1)Z(1)T − αI + αI

)
= I + αR(1). (250)

So by Lemmas 2 and 7, we see that

E [|E1[a1]− E[a1]|] ≤ τnE [|sn(α)− E[sn(α)]|] + o(1) = o(1) (251)

uniformly for α ∈ Q. Putting together the bounds from above, we obtain (246).

Combining Supplemental Equation (246) with Supplemental Equation (243), we conclude that

∣∣∣∣E[sn(α)]− 1

E[a1]

∣∣∣∣ =
∣∣∣∣∣E[sn(α)]− 1

n

n∑
k=1

1

E[ak]

∣∣∣∣∣ = o(1) (252)
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uniformly for α ∈ Q. Here we have again exploited the fact that the random variables ak are identically

distributed.

In view of Lemma 8 and Fubini’s theorem,

1

p
E[z1AzT1 ] =

1

p
E[trA] + o(1) (253)

uniformly for α ∈ Q. Using Lemma 2, the cyclic property of the trace, and Supplemental Equation (250),

we obtain

1

p
E[z1AzT1 ] = 1− 1

p2
E
[
trR(1)(α)Z(1)Z(1)T

]
+ o(1) (254)

= 1− τn − α

p
E[trR(1)(α)] + o(1) (255)

= 1− τn − α

p
E[trR(α)] + o(1) (256)

= 1− τn − ατnE[sn(α)] + o(1) (257)

uniformly for α ∈ Q. Thus, since τn → τ ,

E[a1] = 1− α− τ − ατE[sn(α)] + o(1) (258)

uniformly for α ∈ Q. Returning to Supplemental Equation (252), we can express the Stieltjes transform of

the empirical spectral measure as

E[sn(α)] =
1

E[a1]
+ o(1) =

1

1− α− τ − ατE[sn(α)]
+ o(1) (259)

uniformly for α ∈ Q, where we used Supplemental Equation (239) and Lemma 3 to remove the o(1) error

term from the denominator.

We are now in a position to apply Lemma 4. Indeed, Lemma 4 gives

sup
α∈Q

|E[sn(α)]− s(α)| = o(1). (260)

Combined with Lemma 7 and the Borel–Cantelli lemma, this implies that

sup
α∈Q

|sn(α)− s(α)| → 0 (261)

almost surely as n → ∞. Since sn and s are analytic in C+ and satisfy |sn(α)| ≤ 1
Im(α) and |s(α)| ≤ 1

Im(α)

(by Lemma 3), Vitali’s convergence theorem (see page 168 in Tao9 or Lemma 2.14 in Bai and Silverstein7)
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implies that almost surely

sn(α) → s(α) (262)

as n→ ∞ for each α ∈ C+. In other words, we have shown that the Stieltjes transform of the ESD of 1
pZZ

T

converges almost surely to the Stieltjes transform of FMP
τ . This implies the almost sure convergence of the

ESD by Theroem B.9 in Bai and Silverstein7. The proof of Theorem 1 is complete.

2.4 The limiting spectral distribution of the genetic relatedness matrix

We now demonstrate that the ESD of the GRM m−1ZZT converges almost surely to FMP
τ . All that remains

is to show that the elements of Z conform to the assumptions needed for Theorem 1. We restate those

assumptions here:

1. There exists a constant κ > 0 so that sup1≤i≤m |zi| ≤ κ with probability 1. We note that with a bit of

extra work, this can be generalized to the case where sup1≤i≤m |zi| = o(log(m)).

2. E[z2i z2j ] = 1 + o(1) uniformly for all distinct i, j.

3. E[z3i zj ] = o(1) uniformly for all distinct i, j.

4. One has

E[zizjzkzl] =

 o
(

1
m

)
, if |{i, j, k, l}| = 4,

o
(

1√
m

)
, if |{i, j, k, l}| = 3,

(263)

uniformly in i, j, k, l.

First, 1 is ensured by choosing a minor allele frequency cutoff δ > 0 independent of sample size, as is common

practice. Because each Z = 2−1/2(G1 + G2) is the sum of two standardized Bernoullis, we then have

sup
1≤i≤m

|Zi| ≤
√
2

1− δ√
δ(1− δ)

. (264)

Thus, setting δ = 2(2 + κ2)−1 ensures sup1≤i≤m |Zi| ≤ κ.

2.4.1 From diploid genotypes to haploid genotypes

In what follows we establish that Theorem 1 can be applied directly to the GRM under assortative mating.

For a given collection of diploid sites indexed α1, . . . , αN , denote

Sα1|···|αN
:= sup

{ι1,...,ιN}

∣∣∣∣∣E
[

N∏
i=1

Gαi
ιi

]∣∣∣∣∣ . (265)
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Then |E[Z2
i Z2

j ̸=i]| is a homogeneous fourth degree polynomial bounded by

|E[Z2
i Z2

j ̸=i]| ≤ S2|2 + 2S1|1|2 + S1|1|1|1, (266)

Likewise, we have

|E[Z3
i Zj ̸=i]| ≤ S1|3 + 3S1|1|2, (267)

|E[Z2
i Zj ̸=iZk ̸=i,j ]| ≤ 2S1|1|2 + 2S1|1|1|1, (268)

|E[ZiZj ̸=iZk ̸=i,jZl ̸=i,j.k]| ≤ 4S1|1|1|1. (269)

Thus, we need simply need to establish equivalent bounds on the moments of haploid genotypes:

1. E[GiGj ̸=iGk ̸=i,jGl ̸=i,j,k] = o
(

1
m

)
,

2. E[G2
i Gj ̸=iGk ̸=i,j ] = o

(
1√
m

)
,

3. E[G3
i Gj ̸=i] = o (1) ,

4. E[G2
i G2

j≠i] = 1 + o (1) ,

all which we demonstrated in Section 2.1.

3 Impact of assortative mating on marker-based heritability esti-

mators

3.1 Haseman-Elston regression

Denote the lower triangular components of the phenotypic and genotypic sample covariance matrices as

Y = vec ({σ−2
y yyT }i,j:i<j), S = vec ({p−1ZZT }i,j:i<j). (270)

The HE regression heritability is estimator is obtained by regressing Y on to S:

ĥ2HE =
Ĉov(Y,S)
V̂ ar(S)

. (271)

Under exchangeable, loci, the same is true for each of the haploid standardized genotypes at casual variants,

which we denote {Gk}2mk=1, where Zk = 2−1/2(G2k + G2k+1), k = 1, . . . ,m. We assume that all genotypes at

non-causal variants are independent.
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For each allelic effect uk define ϕk =
√
rνk,∞ such that each correlation between haploid variants is µkl,∞ =

ϕkϕl. The variance/covariance matrix of the standardized diploid genetic effects is thus

E
(
m−1ZTZ

)
= diag{1− ϕ2k}mk=1 + 2ϕϕT (272)

:= Υ∞. (273)

Now consider the element Sij of S corresponding to the average similarity at m diploid loci among the ith

and jth unrelated individuals:

Sij =
1

m

m∑
k=1

Zi,kZj,k. (274)

Because these individuals are unrelated, Zi,k and Zj,l are independent for all k, l and thus E[Sij ] = 0. The

variance is then simply computed as

V ar (Sij) = m−2
m∑

k=1

m∑
l=1

E [Zi,kZj,kZi,lZj,l] (275)

= m−2tr [Υ2
∞]. (276)

Turning our attention to Yij and marginalizing over independent error terms, we see that

σ̂2
y,∞Yij =

m∑
k,l=1

Zi,kZj,lukul, (277)

has zero expectation. The covariance between Yij and Sij is then

Cov(Yij ,Sij) = σ̂−2
y,∞m

−1uTΥ2
∞u. (278)

Thus, the expected value of the HE estimator is computed

E[ĥ2HE] =
Cov(Y,S)
V ar(S)

(279)

=
m−1uTΥ2

∞u

σ2
y,∞m

−2tr [Υ2
∞]

(
σ2
g,∞

σ2
g,∞

)
(280)

=
m · uTΥ2

∞u

σ2
g,∞ · tr [Υ2

∞]
h2∞. (281)

Note that when Υ∞ = I, as is expected under random mating, we simply have E[ĥ2HE] = h2∞ = h20; i.e. HE

regression is unbiased under random mating. We can further simplify the above if we assume exchangeable

loci (i.e., for all k, l, ukul = m−1σ2
g,0). In this case, define ϕ ∈ (−1, 1)m by ϕk ≡ r1/2ν∞ := ϕ for all k. We
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can then write Υ∞ = D + 2ϕϕT , where D = diag{1− ϕ2k}mk=1. We compute uTΥ2
∞u by first noting that

uTΥ2
∞u =uT (D2 + 2ϕϕTD + 2DϕϕT + 4ϕϕTϕϕT )u (282)

=uTD2u+ 4uTϕϕTDu+ 4ϕTϕuTϕϕTu. (283)

Computing the above terms individually yields

uTD2u = σ2
g,0(1− ϕ2)2, (284)

uTϕϕTDu = mσ2
g,0ϕ

2(1− ϕ2), (285)

ϕTϕuTϕϕTu = m2σ2
g,0ϕ

4, (286)

=⇒ Cov(Yij ,Sij) = σ̂−2
y,∞m

−1σ2
g,0

(
1− ϕ2 + 2mϕ2

)2
, (287)

Likewise, we compute the denominator

V ar (Sij) = m−1
(
1 + 2ϕ2 + 4mϕ4

)
. (288)

Thus, under exchangeable loci,

E[ĥ2HE] =
σ2
g,0

(
1− ϕ2 + 2mϕ2

)2
σ2
g,∞ (1 + 2ϕ2 + 4mϕ4)

h2∞ (289)

where ϕ2 = mσ2
y,∞(8rσ2

g,0)
−1
(√

4rσ2
g,0m

−1σ−2
y,∞ + (1− rg,∞)2 − (1− rg,∞)

)2
. Substituting in panmictic

parameters and taking the limit as m→ ∞ yields

E[ĥ2HE] ≈
σ2
g,0

σ2
g,∞

h2∞ =
h2∞

1− rg,∞
. (290)

This gives us a way to estimate the panmictic and equilibrium heritabilities as a function of the HE estimator

when r is known:

ĥ20 := E[h20|ĥ2HE] =
ĥ2HE

1 + 2rĥ2HE + r(r − 1)ĥ4HE
, (291)

ĥ2∞ := E[h2∞|ĥ2HE] =
ĥ2HE

1 + rĥ2HE
. (292)

We can then employ the delta method to approximate the standard errors:

se
[
ĥ20

]
≈ se

[
ĥ2HE

] 1 + rĥ4HE − r2ĥ4HE(
1− r(ĥ2HE − 2)ĥ2HE + r2ĥ4HE

)2 , (293)
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se
[
ĥ2∞

]
≈

se
[
ĥ2HE

]
1 + rĥ2HE

. (294)

3.2 Residual maximum likelihood

3.2.1 Notation and problem statement

Consider the model

y = Xβ + Z̃u+ e,

u
i.i.d.∼ N (0, σ2

g), e
i.i.d.∼ N (0, σ2

e), (295)

or, equivalently,

(y|Z) ∼ MVN (Xβ, σ2
eVγ̊),

Vγ̊ = γ̊Z̃Z̃T + In, γ̊ = σ2
g/σ

2
e . (296)

Above, Z ∈ Rn×p and u ∈ Rp are independent of e ∈ Rn and X ∈ Rn×c, β ∈ Rc are deterministic. The

variance components σ2
g , σ2

e , and thus their ratio γ̊, are strictly positive. Z̃Z̃T = p−1ZZT , the matrix we’ve

been concerned with, is sub-Gaussian with independent rows and, by our results from Section 2, is such that

its empirical spectral density F Z̃Z̃T a.s.→ FMP
τ , where τ = n/p. For simplicity, we assume m = p (all variants

are causal) and Cov(Z.k, Z.l) ≡ µ = O(m−1) for all k 6= l (exchangeable loci), though our results will hold

as long as as m/p → c ∈ (0, 1] and supk ̸=l Cov(Z.k, Z.l) = O(m−1). In what follows, γ̊ will denote true

parameter value, γ̂ the REML estimator, and γ > 0 an arbitrary value.

Let AT : Rn → (colX)⊥ such that ATX = 0, ATA = In−c and define the following quantities for any value

of γ > 0:

• ỹ = y −Xβ, the mean-deviated outcome vector

• Σγ = ATVγA = In−c + γAT Z̃Z̃TA, the transformed marginal covariance

• ζ = AT Z̃, the transformed standardized genotypes

• Pγ = AΣ−1
γ AT , the Schur complement of XTV −1

γ X in

 V −1
γ XTV −1

γ

V −1
γ X XTV −1

γ X


• ∆(γ) = σ−2

e yT
(

Pγ Z̃Z̃TPγ

tr [Pγ Z̃Z̃T ]
− P 2

γ

tr [Pγ ]

)
y = σ−2

e ỹT
(

Pγ Z̃Z̃TPγ

tr [Pγ Z̃Z̃T ]
− P 2

γ

tr [Pγ ]

)
ỹ, the “stationarity function”.

The REML estimator γ̂ satisfies

σ−2
e

yTPγ̂Z̃Z̃
TPγ̂y

tr [Pγ̂Z̃Z̃T ]
= σ−2

e

yTP 2
γ̂ y

tr [Pγ̂ ]
, (297)
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or, equivalently, it is the root of the stationarity function ∆(γ̂) = 0. Choosing γ̂ such that ∆(γ̂) = 0 and

setting σ̂2
e =

yTP 2
γ̂ y

tr [Pγ̂ ]
, σ̂2

g = σ̂2
e γ̂ yields the variance component estimators that maximize the likelihood of

(AT y|Z) ∼ MVN (0, σ2
eΣγ̊). (298)

Our goal is to demonstrate that γ̂ P→ γ̊ as n, p → ∞, n/p → τ . For simplicity, we address the exchangeable

loci case where each uk ≡ ±m−1/2σg,0 for k = 1, . . . ,m, though a similar analysis is possible under a random

SNP effect model given the moments of u|Z.

3.2.2 The limiting spectral distribution of ζζT = AT Z̃Z̃TA

From your previous results, we know that the ESD of the n×p matrix Z̃ = p1/2Z is such that F Z̃Z̃T a.s.→ FMP
τ .

Here we show that the ESD of the (n− c)× p matrix ζ = AT Z̃, is such that F ζζT a.s.→ FMP
τ as well. We first

establish some intermediate results.

Lemma 10. Suppose Q is a Hermitian matrix. If each eigenvalue of Q is either 0 or 1, then Q is an

orthogonal projection.

Proof. By supposition Q is Hermitian, so it suffices to show that Q2 = Q. By the spectral theorem, we can

write

Q = UΛU∗, (299)

where U is a unitary matrix and Λ is a diagonal matrix whose diagonal entries are the eigenvalues of Q.

This implies that Λ2 = Λ since the eigenvalues of Q can only be 0 or 1 by assumption. It follows that

Q2 = UΛU∗UΛU∗ = UΛ2U∗ = Q, (300)

and the proof is complete.

Lemma 11. Suppose Q is an n × n orthogonal projection matrix. If zero is an eigenvalue of Q with

multiplicity m, then rank (In −Q) = m.

Proof. By the spectral theorem, we can decompose

Q = UΛU∗, (301)

where U is an n × n unitary matrix and Λ is an n × n diagonal matrix whose diagonal entries are the

eigenvalues of P (and so must be either 0 or 1). Hence,

In −Q = U(In − Λ)U∗. (302)
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Since U and U∗ have full rank, it follows that

rank (In −Q) = rank (In − Λ). (303)

Since In −Λ is a diagonal Hermitian matrix, it follows that the rank of In −Λ is just the number of nonzero

diagonal entries of In − Λ. In other words, the rank of In − Λ is simply the number of diagonal entries of Λ

that are zero.

Lemma 12. Let A be an n ×m matrix and B an m × n matrix. Then the non-trivial eigenvalues of AB

are the same as the non-trivial eigenvalues of BA (counting algebraic multiplicity).

Proof. The lemma will follow as an application of Sylvester’s determinant identity (also called the Weinstein-

Aronszajn identity): if C and D are matrices of size n×m and m× n respectively, then

det(In + CD) = det(Im +DC). (304)

This identity can be found on pg. 271 of Pozrikidis14.

We now use Sylvester’s determinant identity to complete the proof of the lemma. Assume without loss of

generality that n ≥ m. Then, for z 6= 0,

det(zIn −AB) = zn det(In − z−1AB) = zn det(Im − z−1BA) = zn−m det(zIm −BA). (305)

We conclude that AB and BA have the same characteristic polynomials up to a factor of zn−m. The factor

zn−m corresponds to the trivial eigenvalues at zero.

We now return to the problem of determining the limiting spectral distribution of F ζζT .

Lemma 13. If A is an n× (n− c) matrix such that ATA = In−c, then

‖F p−1ATZZTA − F p−1ZZT

‖ ≤ 3
c

n
. (306)

Proof. The eigenvalues of ATA are all one. By Lemma 12, we conclude that AAT has n − c eigenvalues

that are one and c eigenvalues that are zero. It follows from Lemma 10 that P := AAT is an orthogonal

projection matrix (since it is clearly Hermitian).

We now consider the eigenvalues of 1
pA

TZZTA. By Lemma 12, the eigenvalues of 1
pA

TZZTA are the same as

the eigenvalues of 1
pAA

TZZT = 1
pQZZ

T , except the latter matrix has c additional zero eigenvalues. Hence,

it follows that

‖F p−1ATZZTA − F p−1PZZT

‖ ≤ 2
c

n
. (307)
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Since Q = Q2 = QTQ, by another application of Lemma 12, the eigenvalues of 1
pQZZ

T are the same as

the eigenvalues of 1
pQZZ

TQT , counting multiplicity (this latter matrix is nicer to work with because it is

Hermitian). In other words,

‖F p−1QZZT

− F p−1QZZTQT

‖ = 0. (308)

To complete the proof, we now apply Theorem A.44 from7, which yields

‖F p−1QZZTQT

− F p−1ZZT

‖ ≤ 1

n
rank (QZ − Z). (309)

By properties of the rank,

rank (QZ − Z) = rank ((Q− In)Z) ≤ rank (Q− In). (310)

Finally, by Lemma 11, we see that rank (Q− In) = c. Therefore, putting together the previous bounds (and

applying the triangle inequality), we conclude that

‖F p−1ATZZTA − F p−1ZZT

‖ ≤ 3
c

n
. (311)

Finally, combining Theorem 1 with the above lemma immediately yields F ζζT a.s.→ FMP
τ .

3.2.3 Spectral functions of ζζT

Here we introduce some notation that will simplify future computations. For fixed γ, τ > 0, and for non-

negative integers k, l such that k ≤ l, denote the continuous bounded functions

ψ(k,l) :[0,∞) → [0,∞),

ψ(k,l) :x 7→ xk

(γx+ 1)l
. (312)

Likewise, define their integrals with respect to the MP-law FMP
τ , τ > 0 by

Ψ(j,l) =

∫
ψ(k,l)dF

MP
τ (313)

=
1

2πτ

∫ bτ

aτ

ψ(k,l)(x)x
−1
√
(x− aτ )(bτ − x) dx, (314)

where aτ = (1−
√
τ)2, bτ = (1 +

√
τ)2. Note that 0 < Ψ(k,l) <∞.
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3.2.4 Conditional expectation of the stationarity function

Recall that y = Z̃u+e, where u is deterministic with uTu = σ2
g,0, maxk |uk| = αm−1 for some α independent

of m and e
i.i.d.∼ N (0, σ2

e), and, additionally, that ζ = AT Z̃, Pγ = AΣ−1
γ AT , ATA = I, and γ̊ = σ2

g,0/σ
2
e . We

consider the conditional expectation of ∆(γ) given Z:

E[∆(γ)|Z] = σ−2
e uT

(
Σ−1

γ ζζTΣ−1
γ ζζT

tr [Σ−1
γ ζζT ]

−
Σ−2

γ ζζT

tr [Σ−1
γ ]

)
u+

(
tr [Σ−1

γ ζζTΣ−1
γ ]

tr [Σ−1
γ ζζT ]

−
tr [Σ−2

γ ]

tr [Σ−1
γ ]

)
(315)

= σ−2
e tr

[(
Σ−1

γ ζζTΣ−1
γ ζζT

tr [Σ−1
γ ζζT ]

−
Σ−2

γ ζζT

tr [Σ−1
γ ]

)
uuT

]
+

(
tr [Σ−2

γ ζζT ]

tr [Σ−1
γ ζζT ]

−
tr [Σ−2

γ ]

tr [Σ−1
γ ]

)
. (316)

Write the spectral decomposition ζζT = QΛQT , such that Σγ = Q(I + γΛ)QT , and recall that uTu = σ2
g,0.

Under our exchangeable loci assumption, we have

E[∆(γ)|Z] = γ̊

(
tr [(I + γΛ)−1Λ(I + γΛ)−1Λ]

tr [Σ−1
γ ζζT ]

− tr [(I + γΛ)−2Λ]

tr [Σ−1
γ ]

)
+

(
tr [Σ−2

γ ζζT ]

tr [Σ−1
γ ζζT ]

−
tr [Σ−2

γ ]

tr [Σ−1
γ ]

)
. (317)

Thus, we can write ∆(γ) exclusively in terms of the true parameter value γ̊ and spectral functions with

known limits:

E[∆(γ)|Z] P→ γ̊

(
Ψ(2,2)

Ψ(1,1)
−

Ψ(1,2)

Ψ(0,1)

)
+

(
Ψ(1,2)

Ψ(1,1)
−

Ψ(0,2)

Ψ(0,1)

)
:= h(γ). (318)

Let w = γ̊/γ. Using a computer algebra system to compute the above integrals and defining χγ =√
γ2(τ − 1)2 + 2γ(τ + 1) + 1, the above quantity can be written as

wγ

(
Ψ(2,2)

Ψ(1,1)
−

Ψ(1,2)

Ψ(0,1)

)
+

(
Ψ(1,2)

Ψ(1,1)
−

Ψ(0,2)

Ψ(0,1)

)
=

 4γ(−(
√

τ+1) |1−√
τ |χγ+γ(τ−1)2+τ+1)

γ(
√

τ+1) |1−√
τ |−χγ+1

+4−
4w(−χγ+γτ+γ+1)2

(−χγ+γτ+γ+1)(−γ(
√

τ+1) |1−√
τ |+χγ−1)

+ w
−χγ+γτ+γ+1 (2γ(

√
τ−1)2(χγ−2γ(

√
τ+1)2−3)+2γ(

√
τ+1)2(χγ−3)+8(χγ−1))

)
(4χγ)

−1 (319)

:=
C1 + wC2

4χγ
, where C2/C1 = −1, (320)

where h is strictly monotone in γ and h(γ) = 0 ⇐⇒ γ̊/γ = 1.

Under the more general case, dropping the assumption of exchangeable loci, we can use the following lemma

to demonstrate that E[∆(γ)|Z] P→ h̃(γ) with |h̃(γ)| ≤ |h(γ)|:

Lemma 14. Let A = AT ∈ Rm×m, B = BT � 0. Then

0 ≤ tr [AB] ≤ tr [B]λmax[A]. (321)
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Proof. This is an immediate corollary of Theorem 1 in15.

Denote the rank one matrix A = uuT and observe that

σ−2
e Au = σ−2

e uTuu = σ−2
e σ2

g,0u = γ̊u. (322)

Thus σ2
g,0 is the only non-zero eigenvalue of A and σ−2

e tr [AB] ≤ γ̊tr [B]. All of the matrices in Supplementary

Equation (13) (besides the outer product uuT ) are symmetric positive definite, and we have

E[∆(γ)|Z] ≤ γ̊

(
trΣ−1

γ ζζTΣ−1
γ ζζT

tr [Σ−1
γ ζζT ]

−
trΣ−2

γ ζζT

tr [Σ−1
γ ]

)
+

(
tr [Σ−2

γ ζζT ]

tr [Σ−1
γ ζζT ]

−
tr [Σ−2

γ ]

tr [Σ−1
γ ]

)
. (323)

In what follows, we will assume exchangeable loci, though the above inequality can be used to demonstrate

consistency under any set of effects u for which d
dγE[∆(γ)|Z] can be bounded away from zero in some

neighborhood of γ̊.

3.2.5 Asymptotic variance of the stationarity function

Split the stationarity functions into two components:

∆(γ) =
σ−2
e yTPγZ̃Z̃

TPγy

tr [PγZ̃Z̃T ]︸ ︷︷ ︸
:=LHS(γ)

−
σ−2
e yTP 2

γ y

tr [Pγ ]︸ ︷︷ ︸
:=RHS(γ)

. (324)

Consider the conditional variance of the stationarity function ∆(γ) given Z:

V ar(∆(γ)|Z) =E[∆(γ)2|Z]− E[∆(γ)|Z]2

=
(
E[LHS(γ)2|Z] + E[RHS(γ)2|Z]− 2E[LHS(γ)RHS(γ)|Z]

)
− E[∆(γ)|Z]2. (325)

To compute the above, we make use of the following lemma regarding the products of quadratic forms:

Lemma 15. Let x ∼ MVN (0, Iσ2) and let A,B denote symmetric real matrices conformable with x. Then

E[xTAx · xTBx] = tr [A]tr [B] + 2tr [AB]. (326)

Proof. This is an immediate corollary of Lemma 2 in Bao and Ullah16.

Now, computing the above terms comprising V ar(∆(γ)|Z) individually, we have

σ−2
e uT

(
Σ−1

γ ζζTΣ−1
γ ζζT

tr [Σ−1
γ ζζT ]

−
Σ−2

γ ζζT

tr [Σ−1
γ ]

)
u+

(
tr [Σ−1

γ ζζTΣ−1
γ ]

tr [Σ−1
γ ζζT ]

−
tr [Σ−2

γ ]

tr [Σ−1
γ ]

)
(327)
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First noting that

E[LHS(γ)|Z]2 = σ−4
e

(
uTΣ−1

γ ζζTΣ−1
γ ζζTu+ tr [Σ−1

γ ζζTΣ−1
γ ]

tr [Σ−1
γ ζζT ]

)2

(328)

=
tr [ζTΣ−1

γ ζζTΣ−1
γ ζuuT ]2 + tr [Σ−1

γ ζζTΣ−1
γ ]2

σ4
etr [Σ−1

γ ζζT ]

+
2tr [ζTΣ−1

γ ζζTΣ−1
γ ζuuT ]tr [Σ−1

γ ζζTΣ−1
γ ]

σ4
etr [Σ−1

γ ζζT ]
, (329)

we see that

E[LHS(γ)2|Z] =σ−4
e E

(uT ζTΣ−1
γ ζζTΣ−1

γ ζu+ eTPγ̂Z̃Z̃
TPγ̂e

tr [PγZ̃Z̃T ]

)2

|Z

 (330)

=
(uT ζTΣ−1

γ ζζTΣ−1
γ ζu)2 + E[(eTPγ̂Z̃Z̃

TPγ̂e)
2|Z]

σ4
etr [PγZ̃Z̃T ]

+
+2(uT ζTΣ−1

γ ζζTΣ−1
γ ζu)E[eTPγ̂Z̃Z̃

TPγ̂e|Z]
σ4
etr [PγZ̃Z̃T ]

(331)

=
tr [ζTΣ−1

γ ζζTΣ−1
γ ζuuT ]2 + tr [Σ−1

γ ζζTΣ−1
γ ]2 + 2tr [(Σ−1

γ ζζTΣ−1
γ )2]

σ4
etr [Σ−1

γ ζζT ]2

+
2tr [ζTΣ−1

γ ζζTΣ−1
γ ζuuT ]tr [Σ−1

γ ζζTΣ−1
γ ζζT ]

σ4
etr [Σ−1

γ ζζT ]2
(332)

=E[LHS(γ)|Z]2 +
2tr [Σ−2

γ ζζTΣ−2
γ ζζT ]

σ4
etr [Σ−1

γ ζζT ]2
. (333)

Similarly, we have that

E[RHS(γ)2|Z] = E[RHS(γ)|Z]2 +
2tr [Σ−4

γ ]

σ4
etr [Σ−1

γ ]2
. (334)

Further, noting that,

E[LHS(γ)|Z] · E[RHS(γ)|Z] =
(
tr [ζTΣ−1

γ ζζTΣ−1
γ ζuuT ] + tr [Σ−2

γ ζζT ]
) (

tr [ζTΣ−2
γ ζuuT ] + tr [Σ−2

γ ]
)

σ4
etr [Σ−1

γ ζζT ]tr [Σ−1
γ ]

, (335)

we can write

E[LHS(γ)RHS(γ)|Z] = E[LHS(γ)|Z] · E[RHS(γ)|Z] +
2tr [Σ−4

γ ζζT ]

σ4
etr [Σ−1

γ ζζT ]tr [Σ−1
γ ]

. (336)

All together, we have

E[LHS(γ)2|Z] =E[LHS(γ)|Z]2 +
2tr [(Σ−2

γ ζζTΣ−2
γ ζζT ]

σ4
etr [Σ−1

γ ζζT ]2
, (337)

E[RHS(γ)2|Z] =E[RHS(γ)|Z]2 +
2tr [Σ−4

γ ]

σ4
etr [Σ−1

γ ]2
, (338)
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E[LHS(γ)RHS(γ)|Z] =E[LHS(γ)|Z] · E[RHS(γ)|Z] +
2tr [Σ−4

γ ζζT ]

σ4
etr [Σ−1

γ ζζT ]tr [Σ−1
γ ]

, (339)

E[∆(γ)|Z]2 =σ4
e

(
E[RHS(γ)|Z]2 + E[LHS(γ)|Z]2

−2E[LHS(γ)|Z] · E[RHS(γ)|Z]) . (340)

Canceling terms, we thus have

1

2σ4
e

V ar(∆(γ)|Z) = E[LHS(γ)2|Z] + E[RHS(γ)2|Z]− 2E[LHS(γ)RHS(γ)|Z]− E[∆(γ)|Z]2. (341)

=
tr [Σ−2

γ ζζTΣ−2
γ ζζT ]

tr [Σ−1
γ ζζT ]2

+
tr [Σ−4

γ ]

tr [Σ−1
γ ]2

− 2
tr [Σ−4

γ ζζT ]

tr [Σ−1
γ ζζT ]tr [Σ−1

γ ]
. (342)

We will show that these terms vanish with high probability. First note that

tr [Σ−2
γ ζζTΣ−2

γ ζζT ]

tr [Σ−1
γ ζζT ]2

=
(n− c)−2tr [Σ−2

γ ζζTΣ−2
γ ζζT ]

(n− c)−2tr [Σ−1
γ ζζT ]2

. (343)

The trace term in the numerator is a continuous, bounded spectral function of the eigenvalues of ζζT :

tr [Σ−2
γ ζζTΣ−2

γ ζζT ] =
∑

λiψ(2,4)(λi) (344)

=⇒ (n− c)−2tr [Σ−2
γ ζζTΣ−2

γ ζζT ] = (n− c)−1
(
(n− c)−1tr [Σ−2

γ ζζTΣ−2
γ ζζT ]

)
(345)

P→ (n− c)−1Ψ(2,4). (346)

On the other hand, we’ve already seen that (n−c)−1tr [Σ−1
γ ζζT ]

P→ Ψ(1,1). Again applying Slutzky’s theorem,

we have
tr [Σ−2

γ ζζTΣ−2
γ ζζT ]

tr [Σ−1
γ ζζT ]2

P→ (n− c)−1Ψ(2,4)

Ψ2
(1,1)

= op(1). (347)

By a similar argument, we have that

tr [Σ−4
γ ]

tr [Σ−1
γ ]2

P→ (n− c)−1Ψ(0,4)

Ψ2
(0,1)

= op(1), (348)

tr [Σ−4
γ ζζT ]

tr [Σ−1
γ ζζT ]tr [Σ−1

γ ]

P→ (n− c)−1 Ψ(1,4)

Ψ(1,1)Ψ(0,1)
= op(1), (349)

thus yielding V ar(∆(γ)|Z) P→ 0. Now, applying the conditional form of Chebyshev’s inequality, we have

∀ϵ > 0,

P (|∆(γ)− E[∆(γ)|Z]| ≥ ε|Z) ≤ ε−2V ar(∆(γ)|Z) P→ 0, (350)

i.e., that ∆(γ)− E[∆(γ)|Z] P→ 0. Together with the result of the previous section (|E[∆(γ)|Z]| P→ h(γ) with

h(γ) = 0 iff γ = γ̊), this implies that γ̂ P→ γ̊.
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Supplementary Figure 1: ĥ2REML as a function of sample size (n), the total number of SNPs included in
the model (p), and the number of causal variants (m) in synthetic data. We observe convergence of ĥ2REML
toward h20 for all values of m/p.
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