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ABSTRACT

Alcohol dependence (AD) affects individuals from all racial/ethnic groups, and previous research suggests that there is
considerable variation in AD risk between and among various ancestrally defined groups in the United States. Al-
though the reasons for these differences are likely due in part to contributions of complex sociocultural factors, limited
research has attempted to examine whether similar genetic variation plays a role across ancestral groups. Using a
pooled sample of individuals of African and European ancestry (AA/EA) obtained through data shared within the Da-
tabase for Genotypes and Phenotypes, we estimated the extent to which additive genetic similarity for AD between AA
and EAs using common single nucleotide polymorphisms overlapped across the two populations. AD was represented
as a factor score by using Diagnostic and Statistical Manual dependence criteria, and genetic data were imputed by
using the 1000 Genomes Reference Panel. Analyses revealed a significant single nucleotide polymorphism-based her-
itability of 17 percent (SE = 5) in EAs and 24 percent (SE = 15) in AAs. Further, a significant genetic correlation of
0.77 (SE = 0.46) suggests that the allelic architecture influencing the AD factor for EAs and AAs is largely similar
across the two populations. Analyses indicated that investigating the genetic underpinnings of alcohol dependence
in different ethnic groups may serve to highlight core etiological factors common to both groups and unique etiological
factors specific to each ethnic group.
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INTRODUCTION

Alcohol dependence (AD) is a global problem that affects
individuals from all racial/ethnic groups and all levels of
socioeconomic standing. Previous studies suggest that
there is considerable variation in patterns of drinking
and alcohol use disorders across different US
racial/ethnic groups (Caetano, Clark & Tam 1998;
Chartier & Caetano 2010; Vaeth, Wang-Schweig &
Caetano 2017). For example, analysis of college-aged stu-
dents (i.e. ages 18–24) from the National Epidemiological
Survey on Alcohol and Related Conditions has shown
that higher rates of alcohol consumption are observed
among individuals of European and Native American an-
cestry compared with individuals of African or Asian

ancestry (Chen, Dufour & Yi 2005). Similarly, among
adults, National Epidemiological Survey on Alcohol and
Related Conditions data have shown both lifetime and
past 12-month AD to be significantly lower for individ-
uals of African, Asian or Hispanic ancestry relative to Eu-
ropean ancestry (EA; Hasin et al. 2007). While there is
evidence to suggest that the risk for AD may be greater,
in part, for some individuals as a function of their eco-
nomic standing and sociocultural factors (Caetano &
Clark 1998a, 1998b, 1999; Swendsen et al. 2009), there
have been a limited number of studies that have
attempted to examine whether genetic variation might
also play a role in observed differences among African
Americans. A review of the published literature using a
combination of search terms (Supporting Information)
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in PubMed (in October 2016) revealed 14 genome-wide
association studies (GWASs) that have examined genetic
variants related to alcohol consumption and/or depen-
dence with some combination of analyses in ancestrally
mixed samples or ancestry-specific (i.e. identified by using
samples; Bierut et al. 2010; Panhuysen et al. 2010; John-
son et al. 2011; Zuo et al. 2012; Zuo et al. 2012; Zuo et al.
2013; Zuo et al. 2013; Gelernter et al. 2014; Ulloa et al.
2014; Yang et al. 2014; Zuo et al. 2014; Xu et al. 2015;
Zuo et al. 2015). Of these, none have empirically
compared/contrasted the additive genetic effects in sub-
jects of African ancestry (AA) and EA. While the defini-
tions of ancestry are nuanced and complex, here we
have focused our review on studies that considered ge-
netic ancestry as best defined by the International
HapMap (2003) or 1000 Genomes Project (1KG) refer-
ence panels (e.g. various reference panels comprised
slightly different populations; thus, individuals from sam-
ple data may be characterized differently depending on
the reference panel being used, which can lead to differ-
ent ‘definitions’ of ancestry and potentially different re-
sults; Gibbs et al. 2003; Auton et al. 2015).

Indeed a demonstrable gap exists in the literature on
alcohol genetics such that AAs are substantially under-
represented in twin studies, candidate gene studies and
GWAS (Desalu et al. 2017; Dick et al. 2017). This insuffi-
cient attention in the alcohol literature on distinctions
between AAs and EAs in etiology likely has profound im-
plications on our ability to determine specific etiological
influences as studies of distinct ethnic backgrounds afford
a number of advantages such as differences in allele fre-
quency and linkage disequilibrium (LD; Kristiansson,
Naukkarinen & Peltonen 2008; Dick et al. 2017) that
might facilitate the identification of causal variants as
well as environmental differences (Minster et al. 2016;
Chartier et al. 2017; Dick et al. 2017) that may provide
key insights into GXE relationships. These scientific ad-
vantages underscore the importance of genetic research
in under-represented populations in order to move the
field forward for all ethnicities.

In general, GWASs that incorporate multiple ancestral
populations are limited by small sample sizes, making the
detection of single nucleotide polymorphism (SNP) effects
in the smallest groups more difficult. Statistical power to
detect a true significant effect varies as a function of sam-
ple size, disease prevalence, LD between the measured
marker(s) and the causal locus and the minor allele fre-
quencies (MAFs) of the marker (Purcell, Cherny & Sham
2003; Hong & Park 2012). Given differences in LD, MAF
and sample sizes across ancestral populations (Manolio,
Brooks & Collins 2008), candidate gene studies and
GWAS use strict methods or covariates to limit confound-
ing of association signals. At the same time, differences in
genomic characteristics among ancestral groups

highlight the strengths of conducting candidate gene
and genome-wide types of association studies across mul-
tiple ancestral groups, to the extent that sufficient statis-
tical power is achieved to conduct analyses within group
and/or to examine loci across groups. This has largely
been seen in studies of candidate biological systems, some
of which have shown that increased power can be gained
by studying other ethnic groups where certain alleles are
more commonly observed in comparison with subjects of
EA. For example, some of the most reliable effects on AD
in GWAS center around variation in and around the
chromosome 4 ADH cluster. Genes that play a role in
the alcohol metabolizing system and associated genes
on chromosome 4 (ADH1B, ADH1C and ADH4) and
chromosome 12 (ALDH2) have been observed in individ-
uals of Korean, Chinese, African and EA (Frank et al.
2012; Park et al. 2013; Quillen et al. 2014). Among the
studies including AAs, Gelernter et al. (2014) conducted
a GWAS by using a pooled sample of 16 087 individuals
of EA and AA and was the only study to date to explore
convergence of genome-wide significant findings across
the subpopulations. Further, this study sought to identify
novel risk loci for substance dependence phenotypes and
is the first published GWAS of AAwith significant results.
The report by Gelernter et al. (2014) was the first to pro-
vide some indication of shared genetic effects across pop-
ulations around a nominal GWAS finding but did not
estimate the population-specific additive genetic effects
for AD across EAs and AAs. The current study expands
upon the Gelernter et al. (2014) paper by using pooled
samples of EAs and AAs (respectively) to estimate the ex-
tent of shared additive genetic influence for AD between
AA and EAs. The data for this project are the result of
sharing agreements imposed by the National Institutes
of Health and principal investigators that support collab-
orative work by submitting their data to the Database for
Genotypes and Phenotypes (dbGAP). This is, to our
knowledge, the first study of its kind to estimate these
genome-wide effects by using molecular data.

MATERIALS AND METHODS

Sample

All study data was accessed as part of the National Hu-
man Genome Research Institute’s Gene Environment
Association Study Initiative (dbGaP). For all analyses,
data from four dbGaP datasets were pooled, including
The Study of Addiction: Genetics and Environment
(SAGE; study accession phs000092.v1.p1), the Alcohol
Dependence GWAS in European and African Americans
(Yale Study; study accession phs000425.v1.p1), the Aus-
tralian twin-family study of alcohol use disorder (OZ-ALC;
study accession phs000181.v1.p1), and the GWAS of
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Heroin Dependence (Heroin GWAS study; study
accession phs000277.v1.p1). Table 1 describes the set
of samples.

Assessments

Each study collected DSM-IV symptoms (coded as present
or absent) for AD by using the Semi-Structured Assess-
ment for the Genetics of Alcoholism (SAGE study), the
adapted Semi-Structured Assessment for the Genetics of
Alcoholism OZ (OZ-ALC study), or the Semi Structured
Assessment for Drug Dependence and Alcoholism (Yale
Study, Heroin GWAS) (Bucholz et al. 1994; Hesselbrock
et al. 1999; Pierucci-Lagha et al. 2005). All responses

were limited to individuals who had previously been ex-
posed to alcohol (and possibly other drugs).

Genotyping, quality control and genetic imputation

The GWAS data were obtained through the National
Center for Biotechnology Information’s dbGAP, where
more detailed protocols are available. For each sample
set, quality control (QC) and imputation of autosomal
SNPs were conducted separately by study and are ex-
plained in the succeeding texts. Genotyping in SAGE
was conducted by using the Illumina Human 1 M
BeadChip. Genotyping in the Yale Study was conducted
on the Illumina HumanOmni1-Quad v1.0 microarray.

Table 1 Descriptions of samples that were aggregated to identify genetic factors related to alcohol dependence.

Study N Description

Study of Addiction: Genetics and
Environment (SAGE)

4316 A multiethnic sample of unrelated individuals from three large,
complementary data sets designed to study drug addiction: the
Collaborative Study on the Genetics of Alcoholism (COGA), the
Family Study of Cocaine Dependence (FSCD) and the
Collaborative Genetic Study of Nicotine Dependence (COGEND)

Alcohol Dependence GWAS in
European and African Americans
(Yale Study)

2909 A case–control study focusing on AAs and EAs who meet DSM-IV
criteria for AD. The sample was collected over the course of ongoing
projects that focused on oversampling of alcohol-dependent AAs
and also included measures on cocaine and opioid dependence.
The sample was originally collected to identify sibling pairs suitable
for linkage analysis.

Australian twin-family study of
alcohol use disorder (OZ-ALC)

6701 A family study deriving from two general population volunteer
cohorts of twins in Australia totaling over 11 000 families.
Two cohorts of twins born between 1940 and 1961 (cohort 1)
or 1964–1971 (cohort 2) were assessed by using a shared
protocol to discover genes related to alcohol use. Data from
these studies were compiled into a case–control family-based
GWAS that focused on alcohol use and dependence.

Genome-Wide Association Study
of Heroin Dependence (Heroin GWAS)

6410 A collaboration of investigators from the United States and
Australia to identify genes associated with heroin dependence
by using a case–control study. Data on participants from
the Heroin Study who were assessed for dependence on alcohol
consisted of the following from ongoing genetic studies of
substance dependence conducted by investigators at Yale
and collaborating institutions:
1. Cases (i.e. individuals who reported participation in
pharmacotherapy maintenance treatment for opioid
dependence at some point in their life) and assessed controls
(i.e. individuals not dependent on heroin) from the Comorbidity
and Trauma Study;
2. Cases (i.e. individuals dependent on heroin) from the Heroin
Dependence in Western Australia;
3. Controls (i.e. individuals who did not meet criteria for illicit
drug dependence but may have been dependent on alcohol or
nicotine) from the OZ-ALC Study;
4. Assessed controls (i.e. individuals who did not meet criteria
for substance use dependence) and cases (i.e. individuals dependent
on opioids with heroin listed as the most used opioid).
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Genotyping for the OZ-ALC study was conducted on
Illumina HumanCNV370-Duov1 BeadChip. Finally, the
participants from the Heroin GWAS were genotyped on
three separate platforms: Illumina Human610 Quad v1,
Illumina Human660W Quad v1 and HumanCNV370
Quad v3.0.

Genomic data across all study samples were imputed
[within study sample (by ethnic group)] up to Phase III
of the 1000 Genomes Project (1KG) in order to maximize
similar genetic coverage across samples. Data manage-
ment was conducted by using SNP & VARIATION SUITE v8.
x (Golden Helix, Inc, Bozeman, MT, www.goldenhelix.
com; SNP & VARIATION SUITE version 8.4.4), PLINK version
1.9 (Purcell et al. 2007) and R version 3.1.1. Genetic
imputation was conducted by using MINIMAC (version 3)
via the Michigan Imputation Server (https://
imputationserver.sph.umich.edu/index.html#!pages/
home). Ancestry determination of sample data and impu-
tation of genotypes utilized data from Phase III of the
1000 Genomes Project (1KGP) reference sample (Auton
et al. 2015).

A series of steps across three phases was conducted to:
(1) prepare the data for imputation, (2) impute the data,
and (3) prepare the data for analyses. A flowchart of this
procedure is presented in Fig. 1.
Phase 1: Imputation preparation
Step 1: Identify major ancestral populations within

sample data by using the 1KGP reference
sample.

Subject ancestry was determined by using the Phase 3
reference panel from the 1KGP, which is composed of
2504 individuals across 26 populations and contains

genotyping data for 84.4 million markers. The major an-
cestral groups captured in this data are East Asian, South
Asian, African, European, and American. For ancestry
determination, we restricted the number of markers in
the 1KGP to include only the union of markers present
in each of our sample data sets (2 240 710). We then re-
moved any markers with a MAF less than 5 percent and a
call rate (CR) less than 99 percent. Finally, we used a sub-
set of the resulting set of 1KGP data based on LD
(r2 < 0.5), resulting in a final set of 423 738 markers
to be used for ancestry determination.

Quality control was conducted in each of the study
samples separately prior to being combined with the ref-
erence panel. Each study sample set was subset to include
autosomal SNPs with MAF greater than 10 percent and
a CR of 95 percent. Using allele information compiled
from the marker map of the reference panel data, we
compared the allele frequencies (across all populations)
and strand orientation of our data to the reference panel.
Markers that had MAF differences of greater than 20 per-
cent when compared with the reference panel were
removed. Markers whose stand orientation could not be
resolved (e.g. flipped) were also removed.

After QC of the sample data and preparation of the ref-
erence panel data were complete, the study samples were
combined with the reference data (separately) to deter-
mine ancestry within each study. Principal component
analysis was conducted within each study to examine
population stratification. Plots of genetic components
were examined visually and statistically to determine an-
cestral groups. First, scatterplots comparing the first, sec-
ond and third components, which largely distinguish

Figure 1 Flow chart of data preparation and imputation. (a) First component (PC1; y-axis) plotted against second component (PC2; x-axis). b.
Third component (PC3; y-axis) plotted against second component (PC2; x-axis)
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among African, East Asian, South Asian and European
groups, were plotted to determine ancestry of the sample
data compared with the reference data. For example,
Fig. 2 presents scatterplots of principal components of
the SAGE data with the 1KG reference data. In Fig. 2a,
the first principal component is plotted against the second
principal component. The first component in each of the
data sets separated African and European ancestral
groups, which represented the larges two subgroups in
each of samples examined in this study. Subsequently,
we calculated the mean and standard deviations of the
first principal component in the reference panel and
retained individuals in the sample data whose eigenvec-
tor value fell within two standard deviations (i.e. 98 per-
cent of the 1KG ansestral distributions) of the African and
European reference panel component means. As such,
the current study clusters individuals into two groups,
AA or EA, based on their proximity to established ances-
tral groups within the 1KG reference panel data. To re-
duce further population stratification, we conducted
multidimensional outlier detection within the identified
AA/EA groups in the sample data by using a multiplier
value of 1.5. This procedure computed a distance score
based on the median centroid vector calcutated by using
the first three principal components. Any individuals de-
termined to be outliers from the AA and EA samples were
removed from the sample data. The resulting set of 2571
AA and 14 422 EA individuals in the sample data were

selected for imputation out of the admixed sample of
20 336 available via dbGaP.
Step 2: Subset original data based on identifed popula-

tion groups and prepare data for imputation.
After the AA and EA individuals were identified in

Step 1, the original sample data were subset into the
two respective groups identified by principal component
analysis to be imputed separately. QC was conducted in
each group, and markers with CR < 95 percent or
MAF < 1 percent were removed. Using allele information
compiled from the marker map of the reference panel
data, we compared the allele frequencies (specific to ex-
pected allele frequencies based on the 1KG African or
European populations) and strand orientation of our data
to the reference panel. Markers that had MAF differences
of greater than 10 percent when compared with the ref-
erence panel population were removed. Markers whose
stand orientation could not be resolved (e.g. flipped) were
also removed. Individuals who had greater than 95 per-
cent missingness were also removed. In the Heroin GWAS
study, too few individuals of AA (n = 2) were identified
and data were not able to be imputed for this study. The
final set of data for AA (n = 2569) and EA
(n = 14 422) individuals within each study was sepa-
rated into autosomal chromosome files for submission
to the Michigan Imputation Server.
Phase 2: Imputation of genotypes in identified EAs and

AAs (separately)

Figure 2 Scatterplots of ge-
netic principal components of
the SAGE sample data plotted
with 1000 Genomes Reference
Panel ancestral groups data.
Note: EV, eigenvalue; 1000 Ge-
nomes Referance Panel ancestral
groups included: AFR, African;
AMR, Americas; DATA, SAGE
sample data; EAS, East Asian;
EUR, European; SAS, South
Asian.

a. First component (PC1; y-axis) plotted against second component (PC2; x-axis). 

b. Third component (PC3; y-axis) plotted against second component (PC2; x-axis). 
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Step 3: Submit data for imputation.
Ancestral groups within each study were imputed

separately on the Michigan Imputation Server (https://
imputationserver.sph.umich.edu/index.html) by using
Minimac3 with the 1KG Phase 3 reference panel and
SHAPEIT phasing.
Step 4: Retrieve, compile and reduce imputed data.

After imputation was completed, each file totalled
over 50 million markers. Files were subset based on the
union of the aforementioned 2 057 200 million markers
present across all the studies, and markers that did not
represent biallelic SNPs were removed. This approach en-
sured that different markers present across various
genotyping platforms were represented in the final set of
markers, thereby limiting bias based on representation
from a specific platform. Finally, markers with an imputa-
tion quality score r2 < 0.3 were removed. A small num-
ber of individuals from the SAGE sample (n = 10 AAs,
n = 7 EAs) had missingness patterns that precluded im-
putation and were removed, resulting in a sample size
of 2559 AAs and 14 414 EAs with imputed data.
Phase 3: Data preparation for analysis
Step 5: Merge all study data together within each

population and conduct QC.
Following imputation, all imputed study data for EAs

across each study were merged. Likewise, data for AAs
across each imputed study were merged. QC was con-
ducted within each ancestry group separately to select
individuals with missingness <10 percent and markers
with CR > 99 percent, MAF> 1 percent, and that passed
HWE test (P < 0.0001) (see Table S1 for summary of the
number of markers across EAs/AAs that drop out at each
step). After QC, data for 2559 AAs and 13 461 EAs were
available for analyses.
Step 6: Identify unique and overlapping SNPs across

ancestral groups and construct genetic-
relatedness matrices of unrelated individuals.

Following QC, we identified a common set of SNPs
across both populations (1 656 106 in EAs and AAs)
and a set of SNPs that survived QCs in one group but
not the other (N = 288 181 unique to AAs;
N = 59 693 unique to EAs). Each set of SNPs was then
used to contruct genetic relationship matrices (GRMs).
The GRMs were computed by using the Genomewide
Complex Trait Analysis software tool (version 1.25.3)
and to maximally select one of any pair of individuals
who were more related than second cousins (Yang et al.
2011). Subsetting the data for unrelated individuals
was done to control for cryptic relatedness, which could
artificially inflate SNP heritability estimates (see
succeeding texts). The ancestry specific GRMs used in
univariate genetic analyses were composed of 2257 un-
related AA individuals and 8722 unrelated EA individ-
uals. Of the unrelated indivuduals in each population,

separate GRMs were computed for overlapping and
sample-specific SNPs. Thus, joint analyses for each ances-
try group by using the GRM constructed from overlap-
ping markers as well as the GRM constructed from
sample-specific markers provided the total amount of var-
iation in AD attributable to genetic variants. In addition,
bivariate genetic models described in the succeeding texts
used a combined GRM of 11 314 individuals who had
overlapping SNPs to provide an estimate of genetic corre-
lation between populations.

Derivation of phenotypes and sample characteristics

Data for the seven DSM-IVAD symptoms were pooled to
determine and confirm the factor structure of the AD la-
tent variable in EAs and AAs. A latent variable approach
was used for several reasons: (1) the AD factor is a con-
tinuous phenotype, thereby boosting power to detect ef-
fects compared with a dichotomous trait; (2) the factor
score represents the shared variance across the seven
items and thus does not separate individuals based on
the DSM-IV cutoff, thereby capitalizing on the entire
spectrum of alcohol use issues; and (3) it is consistent
with previous work that suggests that the underlying di-
mension of risk for AD comprises a single factor (Harford
& Muthén 2001; Ray et al. 2008; Palmer et al. 2015).
Data for participants in each study were subset to include
only those participants who were unrelated and were ge-
netically determined to be EA or AA; consequently, data
for 6514 genetically determined EAs and 2196 geneti-
cally determined AAs who had phenotypic data were
used for factor analysis.

The final sample of EA individuals were 53.22 percent
male and ranged in age from 16 to 82 (mean age = 40.16,
standard deviation = 10.42). Of these individuals, 34.35
percent came from the SAGE study, 8.26 percent came
from the Yale study, 15.13 percent came from the
OZ-ALC study, and 42.26 percent came from the Heroin
GWAS study The final sample of AA individuals were
51.09 percent male and ranged in age from 16 to 79
(mean age = 40.48, standard deviation = 8.84). Of these
AA individuals, 37.93 percent came from the SAGE study
and 62.07 percent came from the Yale study. The OZ-ALC
and Heroin GWAS studies did not contain enough individ-
uals of AA to impute genetic data and thus did not contrib-
ute to the final sample of AAs used in the current study.

The factor structure of AD symptoms within each an-
cestral group was determined by randomly splitting each
subpopulation in half to create exploratory and confirma-
tory subsets. Exploratory and confirmatory factor analy-
ses (EFA/CFA) were conducted in MPLUS [version 7]
(Muthén & Muthén 1998–2015) by using weighted
least-squares mean variance estimation. Missing data
were handled in MPLUS with full information maximum
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likelihood estimation. The exploratory subsets consisted
of 1098 AA participants and 3255 EA participants. The
confirmatory subsets consisted of 1098 AA participants
and 3260 EA participants. Scree plots, consistency with
previous empirical research and examination of fit indices
(e.g. root mean square error of approximation, compara-
ble fit index and Tucker–Lewis index) were used to deter-
mine the factor structure for each 1KGP-defined
ancestral group (Hu & Bentler 1999; Yu 2002). EFA
and CFA models indicated that a single latent factor rep-
resented AD symptoms (see Fig. S1 for scree plot and Ta-
ble S2 for model fit for EFA/CFA across ancestral groups).
Measurement invariance by using a sequential approach
to fit a single latent factor across the two ancestral groups
supported configural invariance (Meredith & Teresi 2006;
Dimitrov 2010). As such, the same factor structure, but
non-equivalent error variances and item thresholds,
was supported for each group (see Table S3 for results
of invariance testing). Consequently, the latent factor will
be estimated separately for AA and EA individuals to ac-
knowledge these observed differences.

Based on consensus from EFA/CFA, separate factor
scores (mean = 0, standard deviation = 1) from a one-
factor solution were extracted for EAs and AAs to be used
in genetic analyses. Specifically, these analyses yielded fac-
tor scores derived within each 1KGP-defined ancestral
group that represent latent indicators of AD based on
the seven DSM-IV symptoms specific to that ancestral
group. The factor model, including unstandardized factor
loadings, is presented in Fig. 3 along with fit indices for
each CFAmodel in Table 2. To account for the effects of co-
variates on phenotypic variance, each factor score was
residualized to account for variation due to age, sex and

study of origin, and the residualized scores were used for
all subsequent genetic analyses (Wurm & Fisicaro 2014).

Estimation of variance/covariance explained by the SNPs

Genomic-relatedness restricted maximum likelihood esti-
mation (GREML) was used to decompose phenotypic var-
iance in the EA and AA AD factors into additive effects of
genotyped and imputed SNPs (Yang et al. 2013). In this
approach, genetic similarity captured in each GRM is
modeled as a random effect to account for variance in
the residualized AD factor score for each ancestry group.
Two separate variance components were included in
each ancestry-specific linear model: one component com-
posed of genetic variance due to markers that overlapped
between ancestry groups and one that represented ge-
netic variance due to sample-specific markers (i.e.
markers that passed QC for one group but not the other).
Total SNP heritability for each model represents the total
variation across each component for EAs and AAs sepa-
rately. In bivariate GREML models, the covariance be-
tween two groups can be described by a standard
bivariate linear mixed model in which covariance is
reflected by the covariance between the genetic and
environmental/residual factors influencing each trait.
Only genetic variance attributable to overlapping
markers was used in the bivariate model. As such, with
the current data, the additive genetic correlation (rG-
SNP) reflects shared genetic variance tagged by the geno-
typed SNPs. While the bivariate model does not provide a
direct test of univariate h2SNP differences between the two
populations, the model estimates rG-SNP, which is
interpreted as the extent to which the genetic variants
influencing AD in EAs and AAs are correlated (ranging
in value from �1 to 1 (Lee et al. 2012; de Candia et al.
2013). Consequently, analyses were designed to deter-
mine the SNP heritability (h2SNP) within each ancestral
group as well as the genetic correlation across EAs and
AAs (using the set of overlapping SNPs that survive QC
across EAs’ and AAs). Assuming the lack of direct evolu-
tionary pressures related to alcohol use, we hypothesized

Figure 3 Confirmatory factor analysis of DSM-IV Alcohol Depen-
dence among individuals of African or European ancestry. Note:
AD, alcohol dependence; AA, African ancestry; EA, European ances-
try; Sx1, tolerance; Sx2, withdrawal; Sx3, use longer than intended;
Sx4, failure to quit; Sx5, great time spent using/recovering; Sx6, activ-
ities foregone; Sx7, continued use despite problems

Table 2 Model fit for alcohol dependence factors among African
ancestry and European ancestry groups.

Model fit
information

ADAA ADEA

χ2 (14) 259.800 302.649
P-value <0.001 <0.001
CFI 0.986 0.995
RMSEA [90% CI] 0.089 [0.080,

0.099]
0.056 [0.051,
0.062]

Note: AD, alcohol dependence; AA, African ancestry; EA, European an-
cestry; CFI, confirmatory fit index; RMSEA, root mean square error of
approximation.
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that SNP heritability estimates would be similar across
EAs and AAs and that the genetic correlation would be
high (e.g. >0.60). Given our observation of non-
overlapping SNP sets following sample QC, we also ex-
plored the extent to which these SNPs might be an
additional source of genetic variation for EAs and AAs.

RESULTS

Prevalence of alcohol dependence items across ancestral
groups

Demographics of sample data by ancestral group are pre-
sented in Table 3. Prevalence rates and correlations

between AD symptoms are presented in Table 4. For both
AAs and EAs, ‘using longer than intended’ (58 percent
endorsed in AAs and 57 percent endorsed in EAs) was
the highest endorsed item and giving up activities (33
percent endorsed in AAs and 25 percent endorsed in
EAs) was the lowest endorsed item. Phenotypic
tetrachoric correlations among all items were generally
high (all greater than 0.58).

Phenotypic variance attributable to AD among EAs and
AAs

Total SNP-based heritability estimates of the AD factor
were similar across EAs and AAs. See Table 5 for a sum-
mary of univariate results within EA and AA groups (also
see Table S3 for a summary of results using AD diagnosis
instead of the factor score). Partitioning of the total ge-
netic variance for EAs by using multiple GRMs in a single
linear model revealed a significant SNP heritability esti-
mate of 0.17 (SE = 0.05, P < 0.001) for variation in
AD, which was attributable to SNPs that overlapped with
AAs, and a significant estimate of 0.10 (SE = 0.04,
P < 0.001) for variation in AD, which was attributable
to SNPs that were sample-specific to EAs (i.e. markers that
passed QC for EAs but not for AAs).

Partitioning of the total genetic variance for AAs re-
vealed a significant SNP heritability estimate of 0.24
(SE = 0.15, P = 0.028) for variation in AD, which was at-
tributable to SNPs that overlapped with EAs, and a non-
significant estimate of 0.07 (SE = 0.14, P = 0.313) for
variation in AD, which was attributable to SNPs that
were sample-specific to AAs (i.e. markers that passed QC
for AAs but not for EAs).

Table 3 Demographics of sample data by ancestral group.

EA AA

N % N %

Sex

Male 3467 53.22% 1122 51.09%
Female 3048 46.78% 1074 48.91%

Study
SAGE 2238 34.35% 833 37.93%
YALE 538 8.26% 1363 62.07%
OZ-ALC 986 15.13% 0 0.00%
Heroin 2753 42.26% 0 0.00%

M SD M SD
Age 40.16 10.42 40.48 8.84

Note: EA, European ancestry; AA, African ancestry; N, sample size; M,
mean; SD, standard deviation.

Table 4 Item endorsement and tetrachoric correlations of DSM-IVAlcohol Dependence for each ancestral group.

Symptom % N Correlation

African ancestry 1 2 3 4 5 6
1. Tolerance 47% 1033
2. Withdrawal 53% 1170 0.66
3. Longer than

intended
58% 1279 0.70 0.63

4. Attempt to quit 56% 1238 0.76 0.68 0.69
5. Time spent 57% 1251 0.69 0.89 0.68 0.74
6. Giving up activities 33% 724 0.66 0.59 0.66 0.68 0.67
7. Continued use 46% 998 0.69 0.66 0.66 0.71 0.70 0.72

European ancestry
1. Tolerance 49% 2880
2. Withdrawal 26% 1660 0.58
3. Longer than intended 57% 3278 0.67 0.71
4. Attempt to quit 40% 2608 0.65 0.75 0.74
5. Time spent 30% 1656 0.60 0.86 0.71 0.72
6. Giving up activities 25% 1421 0.62 0.82 0.73 0.75 0.86
7. Continued use 41% 2292 0.65 0.78 0.78 0.75 0.76 0.85
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Further examination of the additive genetic effects of
AD in EAs and AAs by chromosome for those SNPs that
survive QC across EAs and AAs (see Fig. S2) indicated
that longer chromosomes did not account for signifi-
cantly more phenotypic variation (for EAs: R2 = 0.15,
β = 6.96 × 10�11, t(20) = 1.87, P = 0.076; for AAs:
R2 = 0.01, β = 1.98 × 10–11, t(20) = 0.39, P = 0.704).

Genetic correlation attributable to overlapping markers
across EAs and AAs

Bivariate analyses revealed a significant genetic correla-
tion between EAs and AAs (rG-SNP = 0.77, SE = 0.46,
P = 0.030) for SNPs that survived QC across both ances-
tral groups. Overall, this suggests that there is moderate
evidence for convergence across EA and AAs for a subset
of genome-wide SNPs that contribute to the additive ge-
netic variance of AD.

DISCUSSION

The results from this study are, to our knowledge, the
first to directly compare the SNP-based genetic liability
for AD across individuals of African and EA. The inclu-
sion of racial and ethnic minority groups in genetic re-
search (when used appropriately and ethically) is
essential to progress in understanding the role that ge-
netic and sociocultural factors play in racial and ethnic
health disparities. Large-scale GWASs have primarily con-
centrated on European populations, with very little repre-
sentation of individuals of AA (Need & Goldstein 2009).
Yet despite the tendency for genetically informed studies
to focus on populations of EA, psychological and epidemi-
ological research has found that compared with their Eu-
ropean American counterparts, African Americans
initiate drinking at an older age and report overall lower
rates and levels of use and higher levels of abstinence
(Quality, 2016; Zapolski et al. 2014). Further, African
American drinkers report significantly higher rates of so-
cial consequences and AD symptoms compared with Eu-
ropean Americans (Mulia et al. 2009).

Evidence from the current study supported a moder-
ately shared genetic liability for the AD factor score

across EA and AA groups, yet empirical research has
identified social, cultural, health, environmental, histori-
cal, economic and numerous other demographic factors
that contribute to observed disparities in AD risk and
consequences among African Americans (Zapolski et al.
2014). It is likely that the intersectionality of multiple
other risk factors (Mereish & Bradford 2014), such as
sexual orientation and gender, as well as specific individ-
ual and environmental influences, may impart an impact
on risk for substance use above and beyond the observed
genetic effects (McGue, Elkins & Iacono 2000). Although
it was beyond the score of the present study to explore so-
ciocultural factors, the current results do provide a
framework for beginning to explore these potential
sources of variation in the context of genetic variation
(i.e. gene–environment interaction).

Single nucleotide polymorphism-based heritability es-
timates found in this study are consistent with previous
work using the GREML method to examine various pa-
rameterizations of the AD phenotype. Our findings indi-
cate that 27 percent of the phenotypic variation of the
AD factor in EAs and 30 percent of the phenotypic varia-
tion in AA were attributable to additive genetic effects
when examining a set of the same genetic markers across
the two populations. These estimates are similar to the
30 percent SNP-based heritability estimated by Palmer
et al. (2015) by using an AD factor in a sample in EAs
from only the SAGE subsample, within the margin of er-
ror. Recent studies that utilized AD diagnosis, rather than
the factor score, have estimated a heritability of 21 per-
cent in a Caucasian sample (Vrieze et al. 2013) and 22
percent in an African American sample (Yang et al.
2014). Kos et al. (2013) recently estimated that 38 per-
cent and 35 percent of the variation in AD diagnosis risk
are attributable to common SNPs in EAs and AAs, re-
spectively; however, their study did not limit the SNPs
used in the estimations of GRMs to be overlapping across
populations, and thus, different markers for each ances-
tral groups could have contributed to the observed ge-
netic variance in the heritability estimates. For example,
the current data suggested that SNPs that differentially
survive QC across our groups may contribute an addi-
tional 7 percent genetic variance to the AA AD factor

Table 5 Univariate SNP heritability [h2SNP (SE)] of AD factor for EAs and AAs.

h2SNP gene set A h2SNP gene set B Total SNP heritability

European ancestry 0.17 (0.05)*** 0.10 (0.04)** 0.27 (0.05)a

African ancestry 0.24 (0.15)* 0.07 (0.14) 0.30 (0.15)a

Note: Table presenting the univariate SNP heritability of AD factors for EAs and AAs by using subsets of SNPs [gene set A comprises SNPs that survive
within-ancestral-group quality control procedures (QC) across both populations; gene set B includes SNPs that differentially survive QC across ancestral
groups; total SNP heritability reflects the genome-wide effects of gene sets A and B within each ancestral group]. *P < 0.05. **P < 0.01. ***P < 0.001.
aSignificance test not available for total heritability in model, as the likelihood ratio test is conducted only on the specific variance components within the
model.
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and an additional 10 percent genetic variance to the EA
AD factor. Although the statistical significance of the
AA value is precluded by the large standard error, power
simulations conducted by Visscher et al. (2014) indicate
that with a larger sample, the standard error will de-
crease rendering the effect significant. Finally, our study
also partitioned additive genetic effects of overlapping
SNPs in EAs/AAs that survived QC across each chromo-
some. While analyses revealed that longer chromosomes
did not account for more genetic variance, underscoring
the polygenic nature of AD, most chromosomes
accounted for between 0 and 5 percent of the total vari-
ation, regardless of ancestry.

The significant genetic correlation found in this study
suggests that the allelic architecture influencing the AD
factor for EAs and AAs is largely shared across the two
populations. In a single population, genetic correlations
arise from pleiotropy or cosegregations of causal variants
among genes influencing multiple traits. In the current
analysis, the significant genetic correlation represents
these genetic contributions influencing a single trait
(AD) measured across two populations. Consistent with
the conclusion reached by de Candia et al. (2013) and
given that it is unlikely that different causal variants
across ancestral populations would be in LD with the
same SNP, the common causal variants tagged by the
SNPs that survive QC in both 1KGP-defined ancestral
groups likely predate the European-African divergence;
SNPs that differentially fall out across ancestral groups
may also predate the European-African divergence but
are differentially selected in the current sample during
QC (e.g. some may be dropped due to the violation of
the HWE assumption). Future work should examine the
AD factor in other populations to delineate whether these
results apply broadly.

One important consideration for how this study in-
forms future studies is the fact that genetic markers con-
tributing to the AD factor may have different allele
frequencies and different effect sizes across different an-
cestral populations. Likewise, differences in haplotype
structure across ancestral populations will affect our abil-
ity to identify a common set of variants across ancestral
groups. The current study focuses on the aggregate effect
of common variants (i.e. MAF > 0.01 in each popula-
tion). As such, this approach does not examine the effects
of individual loci. The current study provides an overall
estimate of how the aggregate effect of genome-wide
SNPs differs between two homogenous groups (i.e. EAs
and AAs; see methods section). It is possible that genetic
influences on AD may vary as a function of differences in
allele frequency across populations (e.g. variants that are
more common in one population may contribute more to
the overall effect) at the level of the individual loci. How-
ever, one recent study concluded that when variants

common in both populations are examined, differences
in allele frequencies have a minimal influence on genetic
correlation based solely on effect sizes (Brown et al.
2016). The GREML approach used in this study treats
SNPs as statistically random and therefore does not esti-
mate individual effects. Future studies combining multi-
ple populations to identify sets of individual SNPs that
contribute to the SNP heritability of AD should consider
allele frequency and haplotype structure differences. An-
other point of considerations is that although the present
study focused on common biallelic variants that were
present across both ancestral populations, little is known
about how rare variation (e.g. copy number variants,
multiallelic makers and exome variation) contributes to
AD. Kos et al. (2013) show support for modest effects of
rare and uncommon loci on the susceptibility for AD that
were captured from GWAS signals and then aggregated.

The results from this study must be interpreted within
the context of the samples and reference panels used in
analyses. Differences in estimates may arise due to ascer-
tainment differences across the studies, although we
attempted to address this by residualizing our factor scores
in part on the study from which the data were obtained.
AD symptomology and, subsequently, the covariance
among the symptoms may differ across studies due to
study specific inclusion/exclusion criteria, individual pre-
sentation of symptoms or family history status. For exam-
ple, individuals in the Heroin GWAS were recruited via a
large case–control study focused on opioid dependence,
while the SAGE sample consists of a case–control study
made up of alcoholic probands recruited from treatment fa-
cilities. In addition, given that our ancestry determination
relied heavily on the 1KG reference panel data, our findings
may not generalize to other populations or individuals
with substantial admixture. More research is needed to ex-
amine additive genetic effects in additional populations.

In summary, this study demonstrated that (1) approx-
imately 59 percent (i.e., rG-SNP-squared) of the genetic
variation for AD that is tagged by measured and retained
genome-wide SNPs is shared across EAs and AAs and (2)
additional sources of genetic variation may be captured
by studying variants that differentially survive QC in
one population but not the other. Overall, these observa-
tions underscore the reciprocal value of whole genome
alcohol studies of ethnically divergent populations.
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