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Abstract Behavioral disinhibition (BD) is a quantitative

measure designed to capture the heritable variation

encompassing risky and impulsive behaviors. As a result,

BD represents an ideal target for discovering genetic loci

that predispose individuals to a wide range of antisocial

behaviors and substance misuse that together represent a

large cost to society as a whole. Published genome-wide

association studies (GWAS) have examined specific phe-

notypes that fall under the umbrella of BD (e.g. alcohol

dependence, conduct disorder); however no GWAS has

specifically examined the overall BD construct. We con-

ducted a GWAS of BD using a sample of 1,901 adolescents

over-selected for characteristics that define high BD, such

as substance and antisocial behavior problems, finding no

individual locus that surpassed genome-wide significance.

Although no single SNP was significantly associated with

BD, restricted maximum likelihood analysis estimated that

49.3 % of the variance in BD within the Caucasian sub-

sample was accounted for by the genotyped SNPs

(p = 0.06). Gene-based tests identified seven genes asso-

ciated with BD (p B 2.0 9 10-6). Although the current

study was unable to identify specific SNPs or pathways

with replicable effects on BD, the substantial sample var-

iance that could be explained by all genotyped SNPs sug-

gests that larger studies could successfully identify

common variants associated with BD.

Keywords Behavioral disinhibition � GWAS � Pathway

analysis � Heritability

Introduction

Behavioral disinhibition (BD) is a latent quantitative

measure designed to capture common variation shared

across many harmful or dangerous behaviors including

substance problems, antisocial or criminal behavior, and

novelty seeking (Young et al. 2000). In addition, 60–80 %

of variation in BD is attributed to additive genetic effects,

making BD more heritable than many of the individual

component behaviors used to formulate the latent BD

construct (Young et al. 2000; Krueger et al. 2002; Hicks
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et al. 2013). To date, genome-wide association studies

(GWAS) have been restricted to such individual compo-

nent behaviors of BD (McGue et al. 2013), including use or

abuse of various substances (e.g. alcohol (Bierut et al.

2010; Edenberg et al. 2010; Frank et al. 2012; Gelernter

et al. 2014a; Kapoor et al. 2013; Schumann et al. 2011;

Treutlein et al. 2009; Wang et al. 2012), tobacco (Bierut

et al. 2007; Tobacco and Genetics Consortium 2010; Liu

et al. 2010a, b; Thorgeirsson et al. 2010), cannabis

(Agrawal et al. 2011; Verweij et al. 2013), methamphet-

amine (Uhl et al. 2008), opioids (Gelernter et al. 2014b;

Nielsen et al. 2010), and cocaine (Gelernter et al. 2014c)),

conduct disorder (Dick et al. 2011), adult antisocial

behavior (Tielbeek et al. 2012), and related personality

constructs such as excitement seeking (Terracciano et al.

2011). Although certain behaviors, most notably tobacco

use (Bierut et al. 2007; Tobacco and Genetics Consortium

2010; Liu et al. 2010a, b; Thorgeirsson et al. 2010), have

identified robust associations with specific variants, many

GWAS fail to identify individual loci with genome-wide

significant effects. This suggests that much of the herita-

bility underlying each trait is unlikely the result of a small

number of variants with large effects, and will require

larger sample sizes in order to identify variants with small

effects (Lee et al. 2011). GWAS of other phenotypes have

identified significant replicated effects when large enough

samples sizes have been amassed to provide adequate

statistical power to identify variants despite very small

effect sizes (e.g., accounting for 0.1 % of the total vari-

ance, or less; Sullivan 2011; Rietveld et al. 2013).

Increasing sample sizes is only one of a number of ways

to increase statistical power. Improved phenotypic assess-

ment and modeling could also provide increased statistical

power for studies conducted in more moderately sized

samples, and particularly for phenotypes that are presumed

to be continuously distributed in the population (van der

Sluis et al. 2013). BD is a prime example in this context, as

relevant quantitative differences in phenotypic severity are

maintained between individuals, whereas a case–control

approach is fairly insensitive to these differences. How-

ever, one issue with searching for specific genetic influ-

ences on many continuous phenotypes, such as BD, is that

the most severe, clinically significant levels are relatively

rare in the general population, as they are located on the

extreme ends of the distribution. Ascertaining samples

specifically for individuals with extreme phenotypes may

improve our ability to detect small genetic effects by

increasing the sample variance. Therefore, an ideal sample

might be considered one that is enriched (and well-mea-

sured) for extreme BD characteristics.

We report here results and characterization of the initial

GWAS from the Center on Antisocial Drug Dependence

(CADD), an adolescent sample over-selected for severe

BD characteristics. Any genetic effects on BD are poten-

tially attributable to many (i.e., thousands of) variants, each

with a very, very small effect. Incorporating methods for

aggregating effects across multiple variants, such as gene-

and pathway-based analyses, can identify promising causal

biological systems beyond the significance of any single

variant. In addition to SNP level association, the current

study applied gene-based, pathway-based, and genome-

wide approaches to characterize genetic influences on BD in

a diverse, clinically-oversampled, thoroughly phenotyped

sample. By supplementing a GWAS with several methods

of aggregating genetic evidence across many potentially

associated variants, we sought to generate novel insights

into the potential genetic etiology of BD and identify

promising candidates, either old or new, for future study.

Methods

Participants

Participants with genetic and relevant phenotypic data were

ascertained from the CADD projects; full details of par-

ticipant selection for inclusion in the GWAS sample are

provided in the Supplemental materials. GWAS partici-

pants were drawn from several primary studies described

elsewhere (Hartman et al. 2008, Petrill et al. 2003, Rhea

et al. 2006; Stallings et al. 2005). The current sample of

1,901 unrelated adolescents was over-selected for adoles-

cent BD, with half of the participants ascertained specifi-

cally from high-risk populations (i.e. recruited through

substance abuse treatment, special schools, or involvement

with the criminal justice system; see Supplement for

additional criteria for clinical probands). CADD GWAS

participants had an average age of 16.5 (SD = 1.4,

range = 13.0–19.9), 28.9 % were female, and 37.3 % of

participants reported non-Caucasian ancestry (primarily

Hispanic or African; see Supplemental Table S1 for com-

plete demographic statistics).

Phenotype

BD was defined as a composite measure of substance

dependence vulnerability (assessed across 10 substances),

novelty seeking, and conduct disorder symptoms. The BD

phenotype has been previously examined within the CADD

samples, including Young et al. (2000) demonstrating that

the component measures have loadings C0.4 on a common,

highly heritable BD latent factor, and linkage analyses by

Stallings et al. (2003, 2005). A full description of con-

struction of the BD phenotype is provided in the Supple-

ment; Supplemental Fig. S1 shows the distribution of BD in

the CADD GWAS sample. Briefly, principal component
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scores were normed to community-representative samples

in CADD and applied to all CADD GWAS participants

from both the community-representative (48.2 %) and high-

risk samples (51.8 %). Average scores on the BD composite

measure were 0.19 (SD = 1.2, range = -1.9 to 5.0) for the

community-representative participants and 2.76 (SD = 1.2,

range = -0.3 to 6.7) for the high-risk participants.

Genotyping

All participants were genotyped on the Affymetrix 6.0

platform (Affymetrix, Inc., Santa Clara CA), with a total of

696,388 autosomal SNPs available for analysis after qual-

ity control. Full details on processing and cleaning geno-

types for the CADD GWAS sample is provided in the

Supplement. Population stratification was examined by

performing multidimensional scaling in PLINK (Purcell

et al. 2007), in which ten ancestry dimensions were esti-

mated. The first three dimensions notably captured genetic

variation among individuals of self-reported African, His-

panic, and Asian ancestry, compared to a central (majority)

node of individuals of self-reported European ancestry.

Supplemental Fig. S2 illustrates the first three ancestry

dimensions within the CADD GWAS sample (along with

individuals’ self-reported ancestry).

Analyses

Genome-wide analysis was conducted as a linear regres-

sion of the additive effect of each SNP on BD in PLINK

(Purcell et al. 2007). All autosomal SNPs that passed basic

quality controls were tested for association with BD, and

10 ancestry dimensions were included as covariates. Age

and sex were accounted for in the estimation of the BD

phenotype. The criterion for individual SNP significance

was set at p \ 5 9 10-8.

Genome-wide data from the CADD GWAS sample were

further characterized using genome-wide complex trait

analysis (GCTA; Yang et al. 2011). GCTA allows us to

estimate the proportion of variance in the phenotype that

may be explained using all of the genotyped SNPs using

restricted maximum likelihood (REML) analysis. While

this method does not specifically identify any causal vari-

ants, it does estimate the total proportion of sample vari-

ance that may be explained by all of the genotyped SNPs.

Gene-based tests were conducted using VEGAS (Liu

et al. 2010a, b), which aggregates evidence of association

across all SNPs within a gene. A total of 16,094 autosomal

genes were tested for association with BD in CADD, based

on the primary GWAS results, with a multiple-testing-

corrected significance threshold set at p \ 3.1 9 10-6.

INRICH (Lee et al. 2012) was selected to conduct our

pathway analyses as it is well-suited for testing both large

(i.e., exploratory) and small (i.e., candidate) pathway sets.

We took two, complementary approaches to pathway

analysis: first, we sought to confirm previously proposed

candidate gene pathways (Hodgkinson et al. 2008); second,

we conducted an exploratory analysis aimed at identifying

novel pathways involved in BD (The Gene Ontology

Consortium 2000). Additional details of the pathway ana-

lysis methods are discussed in the Supplemental Materials.

Promising results from the pathway analysis of the

CADD sample were followed up in two additional samples:

the Minnesota Center for Twin and Family Research

(MCTFR; N = 3,378), a community-based adolescent

sample (McGue et al. 2013; Miller et al. 2012), and the

Study of Addiction: Genes and Environment (SAGE;

N = 3,988), a clinically over-selected study of addiction

(Bierut et al. 2010; dbGaP study accession:

phs000092.v1.p1). A phenotype similar to BD as defined in

the CADD sample was available in the MCTFR sample

(Hicks et al. 2011; McGue et al. 2013). The phenotype

analysed in the SAGE sample was the average number of

dependence symptoms for substances that each participant

used. Full description of the MCTFR and SAGE samples is

provided in the Supplement.

Results

Figure 1 summarizes the GWAS results for BD in the over-

selected CADD sample. No individual SNP reached gen-

ome-wide significance (p \ 5 9 10-8), nor did any SNP

reach genome-wide significance in the MCFTR or SAGE

samples (see Supplemental Fig. S3 for QQ plots of the

GWAS results from each study). Results from loci reaching

p \ 5.0 9 10-5 in CADD are summarized in Table 1 (full

GWAS results are available from the first author on

request). The most significant SNP in the CADD GWAS

was rs7104461 (p = 5.8 9 10-6), an intergenic SNP on

chromosome 11 for which there are no previously reported

associated phenotypes. While this SNP was not genotyped

in either the MCTFR or SAGE samples, it is in linkage

disequilibium with rs341058 (r2 = 1.0 in 1,000 Genomes

Pilot 1 CEU sample, distance = 8,721 bp; Johnson et al.

2008), which was genotyped on both MCTFR and SAGE

platforms and may serve as a proxy to compare results

across samples. This proxy SNP was not associated with

either adolescent BD in MCTFR (p = 0.30) or adult sub-

stance dependence symptoms in SAGE (p = 0.87).

Whole-genome SNP-heritability was estimated with

GCTA in the CADD sample. SNPs genotyped in the current

study explained 27.8 % of the CADD sample variance in BD

(SE = 0.15, p = 0.03). The point estimate of heritability

remained fairly stable when the sample was restricted to

individuals estimated to be \2.5 % identical-by-state
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(N = 1148, V(G)/Vp = 30.9 %, SE = 0.28, p = 0.10) or

those individuals with only Caucasian ancestry (as deter-

mined by an examination of ancestry component plots,

N = 1031, V(G)/Vp = 49.3 %, SE = 0.31, p = 0.06).

Gene-based association tests identified seven genes as

significant after Bonferroni correction for testing [16,000

genes: MAGI2 (p \ 1.0 9 10-6), NAV2 (p \ 1.0 9 10-6),

CACNA1C (p = 1.0 9 10-6), PCDH9 (p = 1.0 9 10-6),

MYO16 (p = 1.0 9 10-6), IQCH (p = 2.0 9 10-6),

DLGAP1 (p \ 1.0 9 10-6). We examined overlap of these

novel ‘‘candidate’’ genes derived from the CADD GWAS

with results from MCTFR and SAGE as a single ‘‘path-

way’’ (i.e., gene set) in INRICH (Lee et al. 2012). This

allowed us to estimate whether specific genes identified in

the CADD results overlapped with the low p value geno-

mic regions (i.e., loci tagged at r2 [ 0.5 by a SNP reaching

GWAS p \ 5 9 10-3) in the MCTFR and SAGE results

more than expected by chance. The CADD-identified gene

set was not significant in analysis of either the MCTFR (0

regions overlapped genes identified in CADD, p = 1.0) or

SAGE samples (6 regions overlapped genes identified in

CADD, p = 0.14).

Supplemental Table S2 presents gene-based association

test results for previously identified addiction candidate

genes (Hodgkinson et al. 2008), none of which were sig-

nificant after adjustment for multiple testing (minimum

p = 1.4 9 10-3). Supplemental Table S3 gives results for

each of the addiction candidate gene sets tested in CADD.

None of the addiction candidate gene sets showed evidence

of greater-than-chance overlap with low p value genomic

regions in the CADD GWAS (minimum p = 5.0 9 10-1).

Promising pathways emerging from our exploratory

pathway analysis were defined as those meeting nominal

significance before correcting for multiple testing in

CADD and either MCTFR or SAGE samples (Empirical

p \ 0.05). Two pathways met these criteria: visual

perception (Empirical pCADD = 0.038, pMCTFR = 0.012,

pSAGE = 0.22) and phosphatidylcholine biosynthetic pro-

cess (Empirical pCADD = 0.039, pMCTFR = 1.0, pSAGE =

0.026). Neither pathway achieved marginal significance in

any sample after correction for multiple testing (i.e., Cor-

rected p \ 0.10). Supplemental Table S4 provides results

from all 72 pathways meeting Empirical p \ 0.05 in

CADD (from a total of 3,440 pathways tested) that were

subsequently tested in the MCTFR and SAGE samples.

Discussion

No SNP was significantly associated with BD in the CADD

GWAS. This is not surprising, given the relatively small

sample. GWAS of psychiatric and behavioral phenotypes

that have successfully identified and replicated individual

effects of common SNPs have relied on very large samples

(Rietveld et al. 2013; Ripke et al. 2013). Despite the lack of

significance of any individual SNP, GCTA REML analysis

estimated that 49.3 % (SE = 0.31, p = 0.06) of the Cau-

casian ancestry sub-sample variation in BD could be

accounted for by all of the genotyped SNPs. Conversely, a

similar study found no evidence of variance in early ado-

lescent (12-year-old) non-substance behavioral problems

being attributable to common variants (Trzaskowski et al.

2013). This may suggest qualitative differences between

genetic effects on BD at different ages, an effect that has

been reported from twin models of comorbidity between

dependence on different substances (Vrieze et al. 2012),

which is a marker of BD.

Gene-based tests identified seven genes associated with

BD in the CADD sample. However, neither the genes nor

pathways identified as marginally overrepresented in the

CADD GWAS results showed evidence of replicable low-

p values in either the MCTFR or SAGE samples. Taken

Fig. 1 Plot of -log10(p) from

the CADD GWAS, arranged by

chromosomal location. The top

(dashed) horizontal line

indicates genome-wide

significance at p = 5 9 10-8;

the lower (solid) line marks

p = 5 9 10-5 (loci described in

Table 1)
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together, these findings suggest that discoverable effects of

common SNPs underlie the genetic architecture of BD,

although better-powered studies are required to identify the

associated loci.

The comparisons made between datasets must be con-

sidered in light of several limitations of the current study.

There are substantial differences among the examined

samples in terms of age (CADD and MCTFR represent

adolescent data, while SAGE was comprised of adults), sex

composition (MCTFR and SAGE are split evenly by sex,

while CADD has an overrepresentation of males due to the

sampling scheme), and diversity of ancestry (MCTFR is

less diverse than either CADD or SAGE, which each have

different representations of non-Caucasian ancestry

groups). The sampling schemes of CADD and SAGE

aimed to increase power to detect effects by oversampling

extreme phenotype individuals, whereas the MCTFR study

is closer to community-representative.

We sought to identify genetic influences on adolescent

BD through a multifaceted approach. We initially charac-

terized results from a standard GWAS by estimating the

variance explained by common SNPs, and used gene- and

pathway-based tests to identify potential novel candidate

genes and pathways. Results from the estimation of sample

variance explained by all genotyped SNPs and significant

gene-based tests suggest there is a real genetic signal to be

detected within the noise. However, the current sample is

likely underpowered to detect realistic effect sizes of

individual SNPs. Further, the lack of correspondence

between pathway analyses in the CADD and replication

samples may be due to limited power, or qualitative dif-

ferences in the genetic effects on BD across different ages

(adolescent versus adult) or sampling distributions (over-

sampled for BD versus community-representative). Key to

the search for causal genetic pathways underlying BD will

be the availability of increasingly large, thoroughly phe-

notyped samples. Although the current analyses did not

identify specific loci associated with BD, we demonstrate

substantial heritability due to effects of common SNPs.

Larger studies with appropriate phenotypes could well

allow successful identification of common variants asso-

ciated with BD.
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