RESEARCH REPORT doi:10.1111/add.15450

Genetic architecture of four smoking behaviors using
partitioned SNP heritability

Luke M. Evans' (), Seonkyeong Jang®, Dana B. Hancock?, Marissa A. Ehringer'*,
Jacqueline M. Otto?, Scott I. Vrieze* & Matthew C. Keller'®

Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA,' Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO,
USA? Department of Psychology, University of Minnesota, Minneapolis, MN, USA,> GenOmics, Bioinformatics, and Translational Research Center, RTI Interational,
Research Triangle Park, NC, USA* Department of Integrative Physiology, University of Colorado, Boulder, CO, USA® and Department of Psychology and
Neuroscience, University of Colorado, Boulder, CO, USA®

ABSTRACT

Background and Aims  Although genome-wide association studies have identified many loci that influence smoking be-
haviors, much of the genetic variance remains unexplained. We characterized the genetic architecture of four smoking
behaviors using single nucleotide polymorphism (SNP) heritability (hi2xp). This is an estimate of narrow-sense heritability
specifically estimating the proportion of phenotypic variation due to causal variants (CVs) tagged by SNPs.
Design Partitioned h3yp analysis of smoking behavior traits. Setting UK Biobank. Participants UK Biobank partici-
pants of European ancestry. The number of participants varied depending on the trait, from 54 792 to 323 068.
Measurements Smoking initiation, age of initiation, cigarettes per day (CPD; count, log-transformed, binned and dichot-
omized into heavy versus light) and smoking cessation with imputed genome-wide SNPs. Findings We estimated that, in
aggregate, approximately 18% of the phenotypic variance in smoking initiation was captured by imputed SNPs [I3xp
= 0.18, standard error (SE) = 0.01] and 12% [SE = 0.02] for smoking cessation, both of which were more than twice
the previously reported estimates. Estimated age of initiation (héxp = 0.05, SE = 0.01) and binned CPD (hdxp = 0.1,
SE = 0.01) were substantially below published twin-based h? of 50%. CPD encoding influenced estimates, with dichoto-
mized CPD h3xp = 0.28. There was no evidence of dominance genetic variance for any trait. Conclusion A biobank
study of smoking behavior traits suggested that the phenotypic variance explained by SNPs of smoking initiation, age of
initiation, cigarettes per day and smoking cessation is modest overall.
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INTRODUCTION

Cigarette smoking is a leading cause of premature death
world-wide [1], and many smokers struggle to quit, despite
interest and numerous attempts [2]. Although smoking
prevalence has decreased in recent decades due to public
health efforts [3], rates of alternative forms of nicotine
use (e.g. vaping) have grown rapidly during this time [4],
demonstrating a pressing need to characterize the underly-
ing biology of nicotine use and smoking to reduce subse-
quent premature death.

A key aspect of that underlying biology is the genetic ar-
chitecture [5] of smoking behaviors, including the relative
contribution of rare versus common variants, functional

© 2021 Society for the Study of Addiction

annotation of associated loci and characterization of the
neutral and selective forces shaping that architecture. Nu-
merous [6-10] twin, adoption and family studies have
demonstrated that up to 50% of the variance in nicotine
dependence and individual smoking behaviors, such as
quantity, is attributable to genetic influences. Recent
genome-wide association studies (GWAS) have improved
our understanding of this genetic basis by identifying more
than 200 conditionally independent loci associated with
these traits to date [11-17]. This genetic signal is enriched
in loci that influence the epigenome and within specific
brain regions, such as the hippocampus, providing a more
nuanced interpretation of specific class(es) of variants, can-
didate brain regions and potential causal mechanisms that

Addiction, 116, 2498-2508

85U8017 SUOWWIOD BAIE8.D 3(eotjdde Uy Aq peusenob aJe sejole O '8sn JO Sejni 10} Ariq1T8UlUQ /]I UO (SUOTHPUOD-PUB-SWBYW0D A 1M Ale.d 1 BUI|UD//SANL) SUONIPUOD pUe SWie 1 8L 88S *[z202/2T/TE] Uo AriqiTauliuo A8|IW ‘1reiqi opesojod JO AisieAlun Ad 0SKST PPe/TTTT OT/I0p/Wod Ao |1 A ijpul|uo//sdny wolj pepeojumod ‘6 ‘TZ0Z ‘Srv009ET


https://orcid.org/0000-0002-7458-1720
mailto:luke.m.evans@colorado.edu

influence smoking [11]. Together, this body of work
strongly indicates a highly polygenic architecture to
smoking behaviors. Nonetheless, significantly associated
loci collectively explain only a small proportion of the
family-based genetic variance, leaving many additional loci
undiscovered and the majority of the genetic variance
unexplained.

While additional common variants of very small effect
are likely to be identified as sample sizes grow, some of
the unexplained variability probably arises from uncom-
mon and rare variants (MAF < 0.01), although their rela-
tive contribution is uncertain. The most recent large GWAS
[11,15] of smoking behaviors and nicotine dependence,
using GWAS summary statistics-based linkage disequilib-
rium (LD) score regression (LDSC), estimate the
SNP-based heritability [i.e. hdxn the proportion of the total
phenotypic due to causal variants (CVs) tagged by single
nucleotide polymorphisms (SNPs)| [18] due to common
variants as 0.05-0.09 across traits [19]. LD score regres-
sion, although computationally efficient and attractive in
the ability to partition SNP heritability into functional an-
notations, is unable to assess the contribution of rare vari-
ation [19-21]. A related exome sequencing study [22]
estimated that rare coding variants explained approxi-
mately 1-2% of the phenotypic variance. However, given
that the majority of identified associations are intergenic
[11], exome-based studies are unlikely to identify most
rare variants influencing these behaviors. Thus, the
rare-variant contribution to smoking behaviors may yet
be substantial when assessed with methods that can ac-
count for the aggregated influence of common and rare
variation.

Additionally, the contribution of non-additive genetic
variance to these smoking behaviors is poorly understood.
Twin-based studies have typically evaluated ACE models
[9], which estimate additive genetic (A), common environ-
ment (C) and unique environment (E) variances using twin
correlations, implicitly assuming zero dominance genetic
variance. Alternatively, ADE models can be used to esti-
mate dominance variance (D) rather than common envi-
ronment variance. Often, ACE models are chosen over
ADE models because of improved fit. However, because
such studies are based only on correlations of monozygotic
and dizygotic twins, they cannot estimate both simulta-
neously, although both sources may;, in fact, influence trait
variance [23]. Extended twin kinship models can estimate
dominance genetic variance and shared environmental ef-
fects simultaneously, and the only such model to evaluate
smoking initiation found no evidence of dominance genetic
variance [24]. To our knowledge, only one estimate of
SNP-based dominance genetic variance (d3xp) has been re-
ported in addition to previous hi2xp estimates of smoking be-
haviors, which found 62yp of smoker status
indistinguishable from zero [25]. Furthermore, the allele
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frequency spectrum and contribution of functional anno-
tations related to LD, allele frequency, recombination and
related genomic features for smoking behaviors has not
been fully explored. The only published work has examined
a single trait, smoking status, finding contributions of low-
LD and -MAF variants consistent with negative or purify-
ing selection [21,26]. One study applied partitioned h3xp
approaches to evaluate tissue-specific effects, with results
indicating that genes expressed in the cerebellum are
enriched in their contribution to nicotine dependence
[15]. Whether these same patterns exist for other smoking
behaviors, such as quantity of use or cessation, is
unknown.

A comprehensive evaluation of the frequency spec-
trum, the influence of dominance genetic variance and
the contributions of functional annotations is needed to
provide a more complete picture of the genetic architecture
underlying complex smoking behaviors. Here, we use re-
cently developed methods [18,20,21,25,27-29] to evalu-
ate these heritable contributions and characterize the
genetic architecture of four smoking behaviors: smoking
initiation (whether an individual has ever been a regular
smoker), age of initiation of regular smoking, cigarettes
per day (CPD, evaluated with different data encodings)
and smoking cessation. These four behaviors represent a
cross-section of the full spectrum from experimentation to
dependence [30-32], and have been evaluated in recent
GWAS [11,16,17].

METHODS
Phenotype and genetic data sets

Using the UK Biobank [33] full release, we assessed
the same four smoking phenotypes as the GSCAN pro-
ject [11], defined identically (final sample sizes after
quality control; see below): (1) smoking initiation
(n = 323068), defined as whether an individual had
ever in their life-time been a regular smoker by having
smoked more than 100 cigarettes during one’s life-time;
(2) age of smoking initiation (n = 122 200), defined as
the age at which an individual began smoking regularly
(UK Biobank data fields 3426 and 2867); (3) CPD
(n = 116 258), defined as a five-bin variable based on
responses for the number of cigarettes smoked per day
(fields 2887, 3456 and 6183); and (4) smoking cessa-
tion (n = 160 390), defined as individuals who were
not current smokers but had been regular smokers at
one point (fields 1239 and 1249). The latter three phe-
notypes required an individual to be a current or former
regular smoker. Genome-based restricted maximum like-
lihood (GREML) variance estimation (see below) was
limited by available RAM (1 Tb) on a single compute
node; therefore, we analyzed the smoking initiation
and smoking cessation data using three and two
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separate, equally sized subsamples, respectively, and
meta-analyzed the results using inverse-variance
weighting. Age of initiation and CPD were each ana-
lyzed in a single analysis. In addition to the binned
CPD metric used in recent genetic association
meta-analyses [11], we examined the influence of CPD
scale on hdyp estimates, which we previously found to
influence association effect sizes [34]. We evaluated
raw CPD count, log-transformed CPD, \CPD, Ccpp??
and dichotomized CPD (heavy versus light) using four
different sets of CPD cut-offs for heavy and light smoker
definitions [we applied the following heavy (H) and light
(L) cut-offs of CPD: (a) H: > 20, L: < 10; b) H: > 30, L:
< 10; (c) H: > 40, L < 5; (d) median CPD of 20 (H:
> 20, L: < 20; Supporting information, Fig. S1]. Final
sample sizes for the different CPD encodings are pre-
sented in the Supporting information. Together, these
phenotypes, initiation, age of initiation, CPD and cessa-
tion, encompass key aspects of nicotine dependence [35].

The UK Biobank release included ~97 M imputed vari-
ants using both the Haplotype Reference Consortium
(HRC) and 1000 Genomes + UK 10K reference panels [33].
We removed individuals with mismatched self-reported

and genetic sex, |Fpec| > 0.2, and/or no phenotypic infor-
mation. We restricted our analyses to bi-allelic SNPs with
minor allele frequency (MAF) > 0.0001, imputation INFO
score > 0.3, Hardy—Weinberg equilibrium test (HWE)
P-value > 107'° and variant missingness < 0.02 using
plink1.9 [36], yielding 22982 114 SNPs. The choice of
INFO score threshold was based on previous results dem-
onstrating that variants with relatively poor imputation
still contribute to h3wp estimates [27], although hdxp will
be underestimated relative to the true SNP-heritability as
a result of error during imputation [18]. We note that
while we used the HRC-imputed UK Biobank full release,
imputation to larger and more diverse samples, such as
TOPMed [37], would probably improve hgyp estimates.
We identified individuals of European ancestry using prin-
cipal components analysis using flashpca [38] from a set
of MAF- and LD-pruned array markers (plink2 command:
--maf 0.05 --indep-pairwise 50 5 0.2), retaining those
whose scores on the first four PCs fell within the range of
the UK Biobank-identified individuals of European ancestry
(UK Biobank data field ID 22006). We identified unrelated
individuals using GCTA version 1.91.3 [39] with an initial
relatedness cut-off of < 0.05. After observing differences
between REML- and Haseman—Elston-based variance esti-
mators (see below), we applied relatedness thresholds of
0.02, 0.03, 0.04 and 0.05 to assess the potential for envi-
ronmental effects confounding rare variation. Because
sample size varied for each of the four phenotypes, we ap-
plied these relatedness thresholds for each phenotype sepa-
rately. All sample sizes are presented in Supporting
information, Tables S1-S3.
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Variance estimation

We estimated genetic variance in unrelated individuals
using a set of genetic relatedness matrices (GRMs)
partitioned by MAF- and individual marker LD-stratified
bins (LDMS-I), which provides the most robust estimates
of genetic variance across the allelic frequency spectrum
in imputed data [18] and can be used in a GREML (GCTA
[39]) or moment-matching framework, such as phenotype
correlation—genotype correlation (PCGC) regression
[40,41]. These analyses were not pre-registered, and are
therefore exploratory. We used both GCTA and PCGC (for
binary traits) to estimate variances accounted for by GRMs
(described next), and included the following as fixed-effect
covariates: sex (UK Biobank field ID 31), age (21003),
age®, Townsend deprivation index (189), educational at-
tainment (6138), genotyping batch (22 000), scores of
the first 10 world-wide principal components (22 009)
and scores of the first 10 principal components of the
retained individuals of European ancestry estimated, as de-
scribed above.

We estimated hanp using six LDMS-I-partitioned GRMs.
We calculated LD scores for all imputed markers (GCTA:
--ld-score-region 200). We stratified markers into four
MAF intervals [(0.0001, 0.001), (0.001, 0.01), (0.01,
0.05) and (> 0.05)]. For the two more common MAF bins,
we further stratified SNPs into low and high individual SNP
LD score bins based on median LD score within MAF bins.
We did not LD stratify the two more rare MAF bins because
there is (1) low variation in LD for low MAF SNPs (most
SNPs have low LD), (2) limited power to differentiate across
LD bins of SNPs of low MAF and (3) inclusion of more
GRMs required more memory than available. Because of
incomplete data across all four phenotypes, we estimated
all GRMs for each set of unrelated individuals for each phe-
notype separately.

To estimate dominance genetic variance, 5§Np we in-
cluded a dominance genetic relatedness matrix [25] for
each data set (GCTA: --make-bin-d) using all markers with
MAF > 0.01. We did not partition the dominance matrix
by MAF or LD due to the practical limitations noted above.

For binary traits (smoking initiation, smoking cessation
and heavy/light CPD), we converted observed scale Iigxp es-
timates to the liability scale using within-sample trait prev-
alence and the conversion of Lee et al. [42].

Finally, we evaluated the influence of possible con-
founding from the ascertainment of samples genotyped
on the UK Biobank Lung Exome Variant Evaluation
(BiLEVE) chip versus Axiom array and the relatedness
threshold used, i.e. potential environmental confounding
and cryptic relatedness. To assess the influence of the relat-
edness threshold, we applied progressively lower related-
ness thresholds (0.02, 0.03, 0.04 and 0.05), then
estimating h3yp as above. To assess the influence of
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ascertainment of heavy smokers for samples genotyped on
the BiLEVE versus Axiom chip, we ran our GREML-LMDS-I
models after excluding all BiLEVE batches and compared
estimates to those with all individuals included. Because
of the relatively small number of individuals genotyped
on the BiLEVE array, we are unable to run the same
6-GRM models with only those samples, but comparison
to the full model provides an assessment of possible influ-
ence. Resulting sample sizes across thresholds are pre-
sented in Supporting information, Tables S1-S3.

Functional annotation and tissue- and cell type-specific
expression heritability enrichment

We used LD score regression to estimate partitioned h3yp
for functional annotations [20]. We applied the
baseline + LD model [21] to assess functional annotations
such as LD, allele frequency and age, recombination rate
and related annotations, and the possible role of purifying
selection. We applied a Bonferroni cut-off either within
traits (P < 0.00052, as suggestive) or across all traits
(P < 0.00013) to identify significant LDSC regression
coefficients.

We also used LD score regression to estimate
partitioned h3xp for tissue- and cell type-specific gene ex-
pression patterns [20]. As previously detailed in applying
this method for nicotine dependence [15], we used 205 tis-
sues and cell types with publicly available gene expression
data as measured via RNA-sequencing (53 human tis-
sues/cell types from GTEx [43]) or microarrays [152 hu-
man and mouse tissues/cell types from the Data-driven
Expression Prioritized Integration for Complex Traits (DE-
PICT) [44,45] tool]. We used Bonferroni correction to
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identify tissues/cell types with suggestive gene expression
patterns within each trait (P < 2.4 x 10% o = 0.05/
205) and to declare significance based on additional cor-
rection for testing all four traits (P < 6.1 X 107°).

RESULTS

Using GREMI-LDMS-I with unrelated individuals, we esti-
mated smoking initiation h3yp (standard error
[SE]) = 0.176 (0.007), smoking cessation h3we = 0.119
(0.018), cigarettes per day h2wp = 0.098 (0.011) and age
of initiation hgyp = 0.055 (0.011) (Fig. 1, Supporting
information, Table S1). MAF- and LD-partitioned heritabil-
ity estimates differed across traits. Common variants
(MAF > 0.05) contributed substantially to all traits, partic-
ularly common variants with relatively low LD (Fig. 1). Un-
common variants (MAF = 0.01-0.05) with low LD, but not
high LD, contributed to all traits. Alternatively, rare
(MAF < 0.01) variants contributed significantly only to
smoking initiation and age of initiation and very rare
(MAF < 0.001) variants did not contribute significantly
to any trait, as their 95% confidence intervals (CIs) over-
lapped zero, although we note that overlapping Cls are
only one measure of significance, and that others, such
as likelihood ratio tests, may still indicate statistical
significance.

Notably, we estimated significantly different (non-over-
lapping 95% CI) total and binned hiyp for different CPD
encodings. Total h3xp ranged from 0.092 (0.011) for the
raw CPD count to 0.289 (0.038) when CPD was
dichotomized into heavy (CPD > 20)/light (CPD < 10)
smokers (Fig. 2 and Supporting information, Figs S2-S3,
Tables $1-83). All dichotomized CPD total h2xp estimates

GRM

" MAF:0.0001-0.001
1 MAF 0.001-0.01

I MiAF:0.01-0.05, Hight D
I MAF :0.01-0.05, LowLD
I MAF>0.05, Hight D
 MAF>0.05,LowLD

.Total

Initiation

(binned)

Figure | hénp estimates (% standard error) across four smoking behaviors, partitioned using GREML-LDMS-I. Note that twin-based estimates are

approximately 50% across these smoking traits. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 2 thp estimates (+ standard error) of cigarettes per day (CPD) using different phenotype encodings, partitioned using GREML-LDMS-I.
Heavy versus light is dichotomized with light: CPD < 10 and heavy: CPD > 20; estimated hénpe shown on the liability scale using a prevalence of

0.42. [Colour figure can be viewed at wileyonlinelibrary.com]

(except using the median) were > 0.2. We found differ-
ences in partitioned estimates across CPD scale, such that
common variants (MAF > 0.05) contributed to substan-
tially higher hiyp of heavy/light CPD than the other CPD
encodings. The more rare (MAF = 0.001-0.01) variant
contribution was also higher, although the smaller sample
size of the dichotomized data led to larger SEs.

We estimated the contribution of dominance variance.
For all traits, the 95% CI of 62xp estimates overlapped zero
(Supporting information, Table S4).

The relatedness threshold strongly influenced esti-
mated hixp when using PCGC, but not when using GREML
(Supporting information, Tables S1-S3, Figs S2-S6). Spe-
cifically, the PCGC estimates were considerably higher than
GREML estimates when applying a relatedness < 0.05
cut-off with smoking initiation and smoking cessation,
but dropped and had overlapping 95% Cls at lower related-
ness thresholds. The higher estimates when using PCGC
with relatedness < 0.05 were driven by a much greater
contribution of rare variant hixp (MAF < 0.0001;
Supporting information, Figs S5-S6).

When we excluded the batches genotyped on the
BIiLEVE array, we found qualitatively similar estimates
across the four smoking behaviors and the six GRMs
(Supporting information, Fig. S7, Table S1).

We applied partitioned LDSC to assess contribution of
functional annotations and the role of LD and selective
constraint in smoking behaviors. Across smoking behav-
iors we found that SNPs that were highly conserved, that
had lower MAF-adjusted LD or lower MAF quantiles
(MAF > 0.001 in Liu et al. [11]) and that were in areas
of high cytosine-phosphate—guanine (CpG) content and
low recombination rate contributed significantly to
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heritable genetic variation (Supporting information,
Figs S3 and S7, Table S5).

The tissue- and cell type-specific expression analysis of
partitioned LDSC identified cortical and nucleus accum-
bens (NAcc) regions as significantly contributing to herita-
ble variation for smoking initiation and/or cessation,
among others (Fig. 4, Supporting information, Table S6);
these results indicate that genes spanning SNPs associated
with initiation and cessation are enriched for expression
specifically in the frontal cortex, for example, compared
to other tissues. Even broader evidence was observed for
initiation, with significant enrichment for heritability for
genes expressed in 14 total brain tissues including hippo-
campus, cerebellum and substantia nigra. No tissues or cell
types showed significant enrichment for age of initiation or
CPD, and genes specifically expressed in non-brain tissues,
including lung tissue, did not significantly contribute to
heritable variation for any smoking behavior (Supporting
information, Table S6).

DISCUSSION

We estimated hinp and danp across four key smoking be-
haviors, and partitioned variance according to frequency
(rare versus common), functional annotation and gene ex-
pression. Our haxp estimates are more than double the pre-
viously reported [11] LDSC-based and single-component
GREMI-based estimates for smoking initiation (0.18 versus
0.08 and 0.12) and smoking cessation (0.12 versus 0.05
and 0.06), but are nearly identical for binned CPD (0.1).
Our estimate of age of smoking initiation hixp = 0.05 is
nearly identical to the LDSC-based estimate, but is much
lower than the previous single-component GREML
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estimate of 0.11. The difference in age of initiation h3xp
may be due to including all variants in a single GRM when
the causal variants are relatively common [18]. Partitioned
estimates of common, well-tagged variants are similar to
the LDSC-based estimates [11] across all four traits, consis-
tent with expectations, as LDSC estimates variance due to
common, well-tagged variants [18,19]. The higher hip es-
timates for smoking initiation and cessation results from
larger contributions of low-LD and low-frequency variants
(MAF < 0.01), suggesting that for these traits a non-trivial
portion of the genetic variance is due to more rare variants
and those that are poorly tagged by surrounding SNPs.
This contribution is probably underestimated in the cur-
rent study, given that these sites are typically poorly im-
puted even using large reference panels such as HRC,
which leads to a downward bias in hiyp estimates [18,27].

Alternative CPD encodings led to different estimates,
wherein total hiyp for dichotomized heavy/light smoker
status was more than twice that of other encodings. This
may be explained by one or more possible phenomena that
occur after restricting the analyses to phenotypic extremes,
i.e. removing the center of the distribution. First, the ex-
tremes of the CPD distribution may be capturing a pheno-
type more closely approximating physical dependence on
nicotine. Tolerance and withdrawal may index severity of
nicotine dependence [46], a construct for which we do
not have formal diagnoses, but which is highly heritable.
In such a case, while lacking other important aspects of
the clinical presentation such as craving or loss of control,
the dichotomized heavy/light phenotype is comparing indi-
viduals who may find overnight abstinence less aversive
and start smoking later in the day, and endorse lower levels
of nicotine dependence (light) to those who meet criteria for
severe nicotine dependence (heavy), whereas the standard
continuous CPD encoding includes intermediate levels of
smoking heaviness that may or may not correlate with clin-
ical presentations of nicotine dependence. Our
GREML-based estimate of common, well-tagged h3xp
(~0.09) is approximately the same as one recently reported
LDSC-based estimate of nicotine dependence [15], consis-
tent with this hypothesis. Alternatively, the dichotomized
phenotype may reflect lower environmental variance and
result in higher h3yp if, for example, environmental effects
such as reduced access to cigarettes or regular use of nico-
tine replacement therapy lead to intermediate values of
CPD where higher values would otherwise be observed, or
if intermediate values of CPD are intrinsically noisier. Such
differences in variance cannot be tested when either trait is
dichotomous, because the liability underlying the dichoto-
mous trait must be assumed to have unit variance. Future
work may distinguish between these two possibilities, and
determine whether variants that contribute to heavy/light
CPD and other smoking behaviors examined here also con-
tribute to nicotine dependence liability or severity.
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We found no evidence of dominance genetic variance
for any phenotype, although we note that the power to de-
tect daxp is lower relative to hiyp [25], and therefore we
may be limited by our sample size to detect low, but
non-zero daxp Our findings are consistent with those of
Zhu et al. [25], who reported low d3np across 79 traits
and d2xp ~ O for one smoking phenotype: smoking status.
We conclude, therefore, that for the four smoking pheno-
types in the current study, dominance genetic variance
probably contributes little or not at all to the phenotypic
variance. We note that dominance effects of individual al-
leles, when the allele frequency is low, will primarily con-
tribute to the estimated additive genetic variance (i.e.
hdxp) [47]. Alternatively, interactions between, rather than
within, loci may lead to epistatic genetic variation underly-
ing smoking behaviors, and such effects could not be tested
using the current approach.

We identified several functional annotations related to
LD, MAF and sequence conservation that significantly con-
tribute to hdyp (Fig. 3, Supporting information, Table S$5). In
addition, GREML-LDMS-I h3xp analyses identified higher
contribution of poorly tagged variants relative to
well-tagged variants within the same MAF range across
all four traits, and also identified nominally significant
(95% CI > 0) contribution of rare variants (MAF < 0.01)
for smoking initiation, raw CPD count and age of initiation.
Across the four traits analyzed, rare variants accounted for
between 10 and 20% of total hdyp (Supporting information,
Table S1). This suggests a role of low-frequency SNPs in low
LD with surrounding regions, consistent with purifying
and background selection acting to remove mutations with
deleterious effects. Given that tobacco use in high concen-
trations, such as found in cigarettes, is evolutionarily novel
for humans, it is unlikely that negative selection acted di-
rectly on these smoking behaviors, but rather mutations
that today influence nicotine-related behaviors may have
pleiotropic effects on other traits that were subject to nega-
tive selection across evolutionary time [26].

We also found significant heritable contribution of
genes with tissue-specific gene expression across the brain
to smoking initiation and cessation, although the specific
regions were only partly overlapping. Tissues with a strong
evidence base for their involvement in addiction processes
via dopamine and neuronal transmission (cortical, NAcc
and substantia nigra tissues [48—51]) were found to signif-
icantly contribute to hixp along with addiction-relevant
tissues as indicated via neuroimaging studies (amygdala,
caudate basal ganglia and frontal cortex [52—54]). These
results support functional follow-up studies, for instance,
in animal models or drug target studies of nicotine addic-
tion, focused on genes expressed in frontal cortex and NAcc
as key addiction-relevant tissues. Further, these results
highlight the potential relevance of other brain regions
for smoking behaviors, such as cerebellum [55], that was
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found to have the most significant hdyp contribution for
nicotine dependence [15]. Most of the significant LDSC as-
sociations were observed for smoking initiation, which has
the largest GWAS sample size of the four smoking pheno-
types. This suggests that as discovery GWAS sample size in-
creases for the other smoking behaviors, additional tissues
may be implicated and highlight phenotype-specific neural
circuits and brain regions thought to be involved in the dif-
ferent stages of addiction [56,57]. Nonetheless, some of the

© 2021 Society for the Study of Addiction

implicated tissues may also reflect gene expression correla-
tions across tissues rather than direct involvement, and
perturbations in addiction-associated gene expression are
probably pervasive across the brain.

Cumulatively, our results point to a highly polygenic na-
ture of these four smoking behaviors, consistent with puri-
fying selection, and highlight the roles of key brain regions
and the possible influence of rare variation for at least some
smoking behaviors. Genes expressed within these regions
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that harbor rare variants may be useful to target in detailed
sequencing or functional studies, particularly if such genes
could be targeted by repurposed therapies [58].

Our hdyp estimates are still considerably lower than
twin-based estimates, which range from 50 to 80% for de-
pendence, smoking initiation and quantity of use [6-10],
suggesting that additional still-missing heritability re-
mains. This is unlikely to be explained by common causal
variants, which are well-tagged in current imputation ref-
erence panels and from which we expect little downward
bias in h3xp estimates [18]. Further work will be required
to fully characterize non-additive genetic variance, such
as epistasis or gene—environment interaction. Regardless,
rare variants are a probable source of the still-missing her-
itability. The SE of the most rare MAF partitions were sub-
stantially larger than the common variant partition SE,
indicating that increased sample size will improve the pre-
cision of estimates of rare-variant contribution. Overall, es-
timates are still generally low compared with those
attributable to common variants, and even with large refer-
ence panels such as the HRC rare variants are expected to
be poorly imputed, resulting in downwardly biased h3xp
[18,27]. Further work through deep sequencing of large
samples [37] or using those deeply sequenced individuals
as an improved imputation reference panel is needed to ob-
tain less-biased estimates of rare-variant hiyp For example,
height and body mass index (BMI) hdyp estimates using
whole genome sequencing have approached twin-based
heritability estimates; rare variants account for a substan-
tial proportion of the heritability [59].

Beyond the limitation of rare variant imputation, our
study highlights several key issues in hixp estimation. First,
although we used the largest relatively homogeneous sam-
ple available, even larger samples will be needed for more
precise estimation of rare variant contribution, as demon-
strated by the much smaller SE of hdxp estimates of traits
with larger sample sizes. Secondly, estimates are sensitive
to the estimation method, i.e. H-E regression-based versus
GREML, which may be due to how environmental con-
founding differentially influences estimates across
methods. GREML-based estimates were relatively stable
across relatedness thresholds (Supporting information,
Table S1). However, PCGC-based estimates were quite sen-
sitive to relatedness thresholds, being much higher than
GREML-based estimates at a.05 threshold and declining
with lower thresholds. Although a full assessment of per-
formance of estimators is beyond the scope of this study,
it will be important to assess the potential for environmen-
tal confounding. As with the possibility of rare variant—
environment confounding in GWAS [60], environmental
confounding is particularly relevant to estimates of rare
variant hdyp because very rare variants are more likely to
be shared by individuals sharing recent common ancestors
and who may therefore be more likely to share
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environmental influences. Models that incorporate envi-
ronmental sharing of families, partners and close relatives
or geography (e.g. [61,62]) are a possible avenue to address
confounding. To this effect, we note that a full
extended twin-family design found a lower and possibly
sex-dependent estimate of common additive genetic vari-
ance, as well as strong environmental influences [24]. Fi-
nally, the UK Biobank is not a random sample of the
United Kingdom and, importantly, has a lower proportion
of smokers and higher educational attainment than a ran-
dom sample of the UK population would have, which intro-
duces the possibility of collider bias [63]. When we
excluded the individuals run on the BiLEVE array (which
were ascertained for smoking-relevant traits [64]), we
found no evidence that such ascertainment biased our es-
timates, but we cannot rule out the possibility that other
factors could lead to biases.

In conclusion, although our h3yp estimates of the four
different smoking behaviors were generally modest, they
are higher than previously published estimates for smoking
initiation and cessation, emphasize contributions of multi-
ple brain tissues with specific gene expression profiles and
indicate that additional genetic variance may be explained
by low- and rare-frequency variants, which may be due to
the impact of purifying selection on genes involved in these
highly polygenic traits. Quantity of use, as measured by
CPD, may also be modestly heritable, but as it depends on
the encoding of the variable, additional characterization
of the phenotype and its relationship with nicotine depen-
dence is required. All estimates will be improved by the
use of complete whole genome sequencing of large num-
bers of individuals or the use of larger, more diverse impu-
tation panels [37], including the contribution of rare
variants to smoking behaviors.
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Supporting Information

Additional supporting information may be found online in
the Supporting Information section at the end of the
article.

Figure S1 Distribution of raw CPD count, and different
transformations. Note that 1 pack is approximately
20CPD. For dichotomized CPD, we applied the following
Heavy (H) and Light (L) cutoffs of CPD: a) H: >20, L:
<=10; b) H: >30, L: <=10; ¢) H: >40, L: <=5; d) Median
CPD of 20 (H: >20, L: <=20).

Figure S2 Cigarettes per day (CPD) haxp (+/— SE), at four
different relatedness thresholds and with different CPD
transformations as a continuous variable.

Figure S3 Cigarettes per day (CPD) haxp (+/— SE), at four
different relatedness thresholds and with CPD dichoto-
mized using the indicated thresholds for low and high CPD.
Figure S4 Age of initiation hanp (+/— SE), at four different
relatedness thresholds.

Figure S5 Smoking cessation hixp (+/— SE), at four differ-
ent relatedness thresholds, and using two different estima-
tion methods.

Figure S6 Smoking initiation hixp (+/— SE), at four differ-
ent relatedness thresholds, and using two different estima-
tion methods.

Figure S7 hixp (+/— SE) estimates for the four smoking be-
haviors shown in Fig. 1 of the main text, after exclusion of
those samples genotyped on the UK BiLEVE genotyping ar-
ray, using a relatedness threshold of 0.05. Comparison of
these results to those in Fig. 1 show estimates are qualita-
tively similar after excluding those batches, which were
oversampled for heavy smokers from the full UK Biobank
sample based on FEV1 phenotypes.

Figure S8 Partitioned LDSC regression coefficient p-values
for all annotations across all traits.

Table S1 Estimates of partitioned h2SNP in 6 MAF &
LD-stratified bins, and the total h2SNP estimate, across
the four traits (and four CPD encodings) using different re-
latedness cutoffs (0.02, 0.03, 0.04 & 0.05) using GREML.

© 2021 Society for the Study of Addiction

For binary traits, we applied two different estimation
methods (GREML & PCGC), and present estimates on the li-
ability scale. Estimates for CPD use the binned encoding,
matching GSCAN (Liu et al. 2019); for other CPD
encodings, see Tables S2-3. Prevlance for the cessation
phenotype is given as the proportion of current smokers.
Models that indicate “NoBiLEVE” were run with the
genotyping batches using the BiLEVE array excluded from
the analysis.

Table S2 Estimates of partitioned h2SNP in 6 MAF &
LD-stratified bins, and the total h2SNP estimate, across dif-
ferent continous CPD encodings using different relatedness
cutoffs (0.02, 0.03, 0.04 & 0.05) using GREML.

Table S3 Estimates of partitioned h2SNP in 6 MAF &
LD-stratified bins, and the total h2SNP estimate, across
differet dichotomous CPD encodings using different relat-
edness cutoffs (0.02, 0.03, 0.04 & 0.05). We applied two
different estimation methods (GREML & PCGC), and report
estimates on the liability scale using the in-sample preva-
lence estimates. Designations of heavy (H) and light (L)
smokers are indicated in the “Dichotomous Encoding” col-
umn, where, for example, “L10H20” indicates the CPD
cutoff values of light (CPD < =10) and heavy
(CPD > 20) smokers. Median CPD was 20 (L:
CPD < =20, H:CPD > 20).

Table S4 Estimated variance explained including domi-
nance and additive GREML-LDMS-I-paritioned GRMs. Re-
latedness < 0.05 for all analyses.

Table S5 LDSC-based estimates regression coefficients for
annotation categories from the baseline+ILD model.
T = Bonferroni correction applied for all traits and catego-
ries, * = Bonferroni correction applied for all categories
within-traits separately.

Table S6 LDSC-based estimates of regression coefficients for
annotation categories from the cell type- and tissue-specific
expression model. T = Bonferroni correction applied for all
traits and categories, * = Bonferroni correction applied for
all categories within-traits separately.
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