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GWASs have yielded large lists of disease-associated loci. 
Progress in identifying the causal variants driving these asso-
ciations, particularly for complex psychiatric disorders such 

as schizophrenia, has lagged much further behind. Interpreting 
associated variants and loci is therefore vital to understanding 
how genetic variation contributes to disease pathology. Expression 
quantitative trait loci (eQTLs), which are responsible for a substan-
tial proportion of gene expression variance, have been posited as a 
link between associated loci and disease susceptibility1–5, and have 
yielded results for a host of complex traits6–9. Consequently, numer-
ous methods to identify and interpret colocalization of eQTLs 
and GWAS loci have been developed10–13. However, these methods 
require simplifying assumptions about genetic architecture (that is, 
one causal variant per GWAS locus) and/or linkage disequilibrium; 
may be underpowered or overly conservative, especially in the pres-
ence of allelic heterogeneity; and have not yet yielded substantial 
insights into disease biology.

Biologically relevant transcriptomic information can be extracted 
through detailed RNA-sequencing (RNA-seq), as recently described 
by the CommonMind Consortium14 (CMC) in a large cohort of gen-
otyped individuals with schizophrenia and bipolar disorder14. These 
analyses, however, are underpowered to detect statistically signifi-
cant differential expression of genes mapping at schizophrenia (SCZ) 
risk loci, due to the small effects predicted by GWAS, combined with 
the difficulty of obtaining adequate sample sizes of neurological tis-
sues14, and do not necessarily identify all risk variation in GWAS loci. 
Transcriptomic imputation is an alternative approach that leverages 
large eQTL reference panels to bridge the gap between large-scale 
genotyping studies and biologically useful transcriptome studies15,16. 
Transcriptomic imputation approaches codify the relationships 
between genotype and gene expression in matched panels of indi-
viduals, then impute the genetic component of the transcriptome  
into large-scale genotype-only datasets, such as case-control  
GWAS cohorts, enabling investigation of disease-associated gene 
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expression changes. This will allow us to study genes with modest 
effect sizes, likely representing a large proportion of genomic risk  
for psychiatric disorders14,17.

The large collection of DLPFC gene expression data collected 
by the CMC14 affords us a unique opportunity to study and cod-
ify relationships between genotype and gene expression. Here, we 
present a novel set of gene expression predictor models, built using 
CMC DLPFC data14. We compare different regression approaches 
to building these models (including elastic net15, Bayesian sparse 
linear mixed models and ridge regression16, and using max eQTLs), 
and benchmark performance of these predictors against existing 
GTEx prediction models. We applied our CMC DLPFC predictors 
and 12 GTEx-derived neurological prediction models to predict 
gene expression in SCZ GWAS data, obtained through collabora-
tion with the Psychiatric Genomics Consortium (PGC) SCZ work-
ing group, the ‘CLOZUK2’ cohort, and the iPSYCH-GEMS SCZ 
working group. We identified 413 genome-wide significant genic 
associations with SCZ in our PGC + CLOZUK2 sample, consti-
tuting 67 independent associations outside the MHC region. We 
demonstrated the relevance of these associations to SCZ etiopathol-
ogy by using gene set enrichment analysis, and by examining the 
effects of manipulation of these genes in mouse models. Finally, we 
investigated the spatiotemporal expression of these genes by using a 
developmental transcriptome dataset, and identified distinct spatio-
temporal patterns of expression across our associated genes.

Results
Prediction models based on CMC DLPFC expression. Using 
matched CMC genotype and gene expression data, we developed 
DLPFC genetically regulated gene expression (GREX) predictor 
models. We systematically compared four approaches to build-
ing predictors15,16 within a cross-validation framework. Elastic net 
regression had a higher distribution of cross-validation R2 (RCV

2) 
and higher mean RCV

2 values (Supplementary Figs. 1 and 2a) than all 
other methods. We therefore used elastic net regression to build our 
prediction models. We compared prediction models created using 
elastic net regression on SVA-corrected and uncorrected data14.  
The distribution of Rcv

2 values for the SVA-based models was sig-
nificantly higher than that for the uncorrected data14,18 (KS test; 
P < 2.2 × 10−16; Supplementary Fig. 1b,c). In total, 10,929 genes were 
predicted with elastic net cross-validation Rcv

2 > 0.01 in the SVA-
corrected data and were included in the final predictor database 
(mean Rcv

2 = 0.076).
To test the predictive accuracy of the CMC-derived DLPFC 

models, and to benchmark this against existing GTEx-derived pre-
diction models, GREX was calculated in an independent DLPFC 
RNA-seq dataset (the Religious Orders Study Memory and Ageing 
Project, ROSMAP19,20). We compared predicted GREX to measured 
ROSMAP gene expression for each gene (Replication R2, or RR

2) for 
the CMC-derived DLPFC models and 12 GTEx-derived brain tis-
sue models15,21 (Fig. 1 and Supplementary Fig. 2b). CMC-derived 
DLPFC models had higher average RR

2 values (mean RR
2 = 0.056), 

more genes with RR
2 > 0.01, and significantly higher overall dis-

tributions of RR
2 values than any of the 12 GTEx models (KS test, 

P < 2.2 × 10−16 across all analyses; Fig. 1). Median RR
2 values were 

significantly correlated with sample size of the original tissue 
set (ρ = 0.92, P = 7.2 × 10−6), the number of genes in the predic-
tion model (ρ = 0.9, P = 2.6 × 10−5), and the number of significant 
‘eGenes’ in each tissue type (ρ = 0.95, P = 5.5 × 10−7; Fig. 1c). Notably, 
these correlations persist after removing obvious outliers (Fig. 1c).

To estimate transancestral prediction accuracy, GREX was cal-
culated for 162 African American individuals and 280 European 
individuals from the NIMH Human Brain Collection Core (HBCC) 
dataset (Supplementary Fig. 2c). RR

2 values were higher on average 
in Europeans than in African Americans (average RR_EUR

2 = 0.048, 
RR_AA

2 = 0.040), but were significantly correlated between African 

Americans and Europeans (ρ = 0.78, P < 2.2 × 10−16, Pearson test; 
Supplementary Fig. 3).

Application of transcriptomic imputation to schizophrenia. We 
used CMC DLPFC and 12 GTEx-derived brain tissue prediction 
models to impute GREX of 19,661 unique genes in cases and con-
trols from the PGC-SCZ GWAS study22. Predicted expression levels 
were tested for association with SCZ. Additionally, we applied CMC 
and GTEx-derived prediction models to summary statistics from 11 
PGC cohorts (for which raw genotypes were unavailable) and the 
CLOZUK2 cohort. Meta-analysis was carried out across all PGC-
SCZ and CLOZUK2 cohorts by using an inverse-variance-based 
approach in METAL. Our final analysis included 40,299 cases and 
65,264 controls (Supplementary Fig. 4a).

We identified 413 genome-wide significant associations, rep-
resenting 256 genes in 13 tissues (Fig. 2a). The largest number of 
associations was detected in the CMC-DLPFC GREX data (Fig. 2c;  
49 genes outside the MHC, 69 genes overall). We sought replica-
tion of our CMC DLPFC SCZ associations in an independent 
dataset of 4,133 cases and 24,788 controls in collaboration with the 
iPSYCH-GEMS SCZ working group (Supplementary Fig. 4b). We 
tested for replication of all Bonferroni-significant genes identified 
in our CMC-DLPFC analysis. Twelve out of 100 genes replicated 
in the iPSYCH-GEMS data, significantly more than expected by 
chance (binomial test, P = 0.0043). Notably, 11 of 12 replicating 
loci are previous GWAS loci, compared with 38 of 88 nonreplicat-
ing loci. There was significant concordance between our discovery 
(PGC + CLOZUK2) and replication (iPSYCH-GEMS) samples; 72 
of 100 genes have consistent direction of effect, including all 12 rep-
licating genes (binomial P = 1.258 × 10−5), and we found significant 
correlation of effect sizes (P = 1.784 × 10−4; ρ= 0.036) and –log10P 
values (P = 1.073 × 10−5; ρ = 0.043).

To identify the top independent associations within genomic 
regions, which include multiple associations for a single gene 
across tissues or multiple nearby genes, we partitioned genic asso-
ciations into 58 groups defined based on genomic proximity and 
applied stepwise forward conditional analysis within each group 
(Supplementary Table 1). In total, 67 non-MHC genes remained 
genome-wide significant after conditioning (Table 1 and Fig. 2a,b). 
The largest signal was identified in the CMC-DLPFC GREX data 
(24 genes; Fig. 2c), followed by the putamen (seven genes). 19 out 
of 67 genes did not lie within 1 Mb of a previously genome-wide 
significant GWAS locus22 (shown in bold in Table 1); of these, 5 of 
19 genes were within 1 Mb of a locus that approached genome-wide 
significance (P < 5 × 10−07). The remaining 14 genes all fall within 
nominally significant PGC-SCZ GWAS loci (P < 8 × 10−04), but did 
not reach genome-wide significance.

We compared our CMC-DLPFC prediXcan associations statis-
tics to COLOC results from our recent study10,23. Briefly, COLOC 
tests for colocalization between GWAS loci and eQTL architecture. 
We calculated COLOC probabilities of no colocalization (‘PP3’) and 
colocalization (‘PP4’); we consider PP4 > 0.5 to be significant evi-
dence of colocalization24. We found a significant correlation between 
prediXcan P values and PP4 values; ρ = 0.35, P = 2.3 × 10−311. Thirty-
one genes had ‘strong’ evidence of colocalization between GWAS 
loci and lead or conditional eQTLs23; of these, 21 were genome-
wide significant in our prediXcan analysis (significantly more than 
expected by chance, binomial P value = 2.11 × 10−104), and all had 
P < 1 × 10−4. We identified 40 GWAS loci with no significant pre-
diXcan associations; all of these loci also had strong evidence for 
no colocalization in our COLOC analysis (median PP3 = 0.936, 
median PP4 = 0.0027).

Implicated genes highlight SCZ-associated molecular pathways. 
We tested for overlap between our non-MHC SCZ-associated genes 
and 8,657 gene sets comprising (1) hypothesis-driven pathways and 
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(2) general molecular database pathways. We corrected for mul-
tiple testing by using the Benjamini–Hochberg false discovery rate 
(FDR) correction25.

We identified three significantly associated pathways in our 
hypothesis-driven analysis (Table 2). Targets of the fragile-X men-
tal retardation protein formed the most enriched pathway (FMRP; 
P = 1.96 × 10−8). Loss of FMRP inhibits synaptic function, is comor-
bid with autism spectrum disorder, and causes intellectual disability 
as well as psychiatric symptoms including anxiety, hyperactivity, 
and social deficits26. Enrichment of this large group of genes has 
been observed frequently in studies of SCZ27,28 and autism26,29. There 
was a significant enrichment among our SCZ-associated genes 
and genes that have been shown to be intolerant to loss-of-func-
tion mutations30 (P = 5.86 × 10−5) and with copy number variants 
(CNVs) associated with bipolar disorder31 (P = 7.92 × 10−8), in line 
with a recent GWAS study of the same individuals28.

Next, we performed an agnostic search for overlap between 
our SCZ-associated genes and ~8,500 molecular pathways col-
lated from large, publicly available databases. Thirty-three path-
ways were significantly enriched after FDR correction (Table 2 
and Supplementary Table 2), including a number of pathways with 
some prior literature in psychiatric disease. We identified an enrich-
ment with porphyrin metabolism (P = 1.03 × 10−4). Deficiencies in 
porphyrin metabolism lead to ‘porphyria’, an adult-onset meta-
bolic disorder with a host of associated psychiatric symptoms, in 
particular, episodes of violence and psychosis32–37. Five pathways 
potentially related to porphyrin metabolism, regarding abnormal 
iron level in the spleen, liver, and kidney, are also significantly 
enriched, including two or five of the most highly enriched path-
ways (P < 2.0 × 10−4). The PANTHER and REACTOME pathways 
for heme biosynthesis and the GO pathway for protoporphyrino-
gen IX metabolic process, which are implicated in the development 
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Fig. 1 | Replication of DLPFC prediction models in independent data. Measured gene expression (ROSMAP RNA-seq) was compared with predicted 
genetically regulated gene expression for CMC DLPFC and 12 GTEx predictor databases. Replication R2 values are significantly higher for the DLPFC than 
for the 12 GTEx brain expression models. a, Distribution of RR

2 values of CMC DLPFC predictors in ROSMAP data. Mean RR
2 = 0.056. 47.7% of genes have 

RR
2≥ 0.01. Box plot midlines show means, edges show quartiles, and whiskers show full range of data. b, Distribution of RR

2 values of 12 GTEx predictors 
in ROSMAP data. c, Table of sample sizes and P-value thresholds for CMC DLPFC, and GTEx data. Number of samples, number of genes in the prediXcan 
model, and number of eGenes are all significantly correlated with predictor performance in ROSMAP data (Spearman correlation test).
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of porphyric disorders, are also highly enriched (P = 2.2 × 10−4, 
2.6 × 10−4, 4.1 × 10−4), but do not pass FDR correction.

Hexosaminidase activity was enriched (P = 3.47 × 10−5) in our 
results. This enrichment is not driven by a single highly associated 
gene, but rather, every single gene in the HEX-A pathway is nomi-
nally significant in the SCZ association analysis (Supplementary 
Table 2). Deficiency of hexosaminidase A (HEX-A) results in seri-
ous neurological and mental problems, most commonly presenting 
in infants as Tay–Sachs disease38. Adult-onset HEX-A deficiency 
presents with neurological and psychiatric symptoms, notably 
including onset of psychosis and SCZ39. Five pathways correspond-
ing to Ras and Rab signaling, protein regulation, and GTPase activ-
ity were enriched (P < 6 × 10−5). These pathways have a crucial role 
in neuron cell differentiation40 and migration41, and have been 
implicated in the development of SCZ and autism42–45. We also find 
significant enrichment with protein phosphatase type 2A regulator 
activity (P = 5.24 × 10−5), which was associated with major depres-
sive disorder (MDD) and across MDD, bipolar disorder (BPD) and 
SCZ in the same large integrative analysis46, and has been implicated 
in antidepressant response and serotonergic neurotransmission47.

GREX associations are consistent with functional validation. To 
test the functional impact of our SCZ-associated predicted gene 
expression changes (GREX), we performed two in silico analyses. 
First, we compared differentially expressed genes in the Fromer 
et al. CMC analysis27 to DLPFC prediXcan results. Out of 460, 76 
were nominally significant in the DLPFC prediXcan analysis, sig-
nificantly more than would be expected by chance (binomial test, 

P = 8.75 × 10−20). In particular, the Fromer et al. analysis highlighted 
six loci where expression levels of a single gene putatively affected 
SCZ risk. All six of these genes are nominally significant in our 
DLPFC analysis, and two (CLCN3 and FURIN) reach genome-wide 
significance. In the conditional analysis across all brain regions, one 
additional gene (SNX19) reaches genome-wide significance. The 
direction of effect for all six genes matches the direction of gene 
expression changes observed in the original CMC paper, indicat-
ing that gene expression estimated in the imputed transcriptome 
reflects measured expression levels in brains of individuals with 
SCZ. Further, this observation is consistent with a model where 
the differential expression signature observed in CMC is caused by 
genetics rather than environment.

To understand the impact of altered expression of our 67 SCZ-
associated genes, we performed an in silico analysis of mouse 
mutants by collating large, publicly available mouse databases48–51. 
We identified mutant mouse lines lacking expression of 37 out of 67 
of our SCZ-associated genes, and obtained 5,333 phenotypic data 
points relating to these lines, including 1,170 related to behavioral, 
neurological, or craniofacial phenotypes. Out of 37 genes, 25 were 
associated with at least one behavioral, neurological, or related phe-
notype (Supplementary Table 3).

We carried out two tests to assess the rate of phenotypic abnor-
malities in SCZ-associated mouse lines. First, we compared the 
proportion of SCZ-gene lines with phenotypic abnormalities to 
the ‘baseline’ proportion across all mouse lines for which we had 
available data. SCZ-associated lines were significantly more likely 
to display any phenotype (paired t test, P = 0.009647). Next, we 
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Table 1 | SCZ-associated genes following conditional analysis

Gene name Tissue BETA P value GVAR Adjusted BETA Adjusted OR

GNL3 Cerebellum 0.037 1.39 × 10−11 0.115 0.012 1.012

THOC7 Cerebellum −0.113 5.77 × 10−10 0.010 −0.011 0.989

NAGA Cerebellum 0.122 1.12 × 10−09 0.009 0.011 1.011

TAC3 Cerebellum −0.868 8.03 × 10−08 0.000 −0.015 0.985

CHRNA2 Cerebellum −0.016 1.63 × 10−07 0.395 −0.010 0.990

ACTR5 Cerebellum 0.208 3.88 × 10−07 0.019 0.029 1.029

INO80E Frontal cortex 0.130 7.25 × 10−12 0.009 0.012 1.013

PLPPR5 Frontal cortex −0.672 2.58 × 10−09 0.006 −0.053 0.948

FAM205A Frontal cortex 0.043 1.21 × 10−08 0.061 0.011 1.011

AC110781.3 Thyroid 0.342 1.31 × 10−13 0.002 0.014 1.014

IMMP2L Thyroid −0.073 7.09 × 10−12 0.046 −0.016 0.984

IGSF9B Thyroid −0.024 3.05 × 10−07 0.156 −0.010 0.991

NMRAL1 Thyroid 0.038 4.03 × 10−07 0.060 0.009 1.009

HIF1A DLPFC 11.130 7.52 × 10−14 0.000 0.148 1.159

TIMM29 DLPFC 11.207 9.27 × 10−14 0.000 0.168 1.183

ST7-OT4 DLPFC 10.170 5.79 × 10−13 0.001 0.318 1.374

H2AFY2 DLPFC 10.962 3.60 × 10−12 0.000 0.191 1.211

STARD3 DLPFC 10.740 5.90 × 10−12 0.001 0.304 1.355

CTC-471F3.5 DLPFC 8.535 1.11 × 10−11 0.000 0.104 1.110

SF3A1 DLPFC 8.651 1.32 × 10−11 0.000 0.083 1.086

ZNF512 DLPFC 10.312 1.32 × 10−11 0.001 0.261 1.298

FURIN DLPFC −0.084 2.22 × 10−11 0.022 −0.012 0.988

INHBA-AS1 DLPFC 8.399 2.24 × 10−11 0.000 0.127 1.135

SF3B1 DLPFC 0.099 6.14 × 10−11 0.014 0.012 1.012

EFTUD1P1 DLPFC −0.092 1.81 × 10−10 0.017 −0.012 0.988

MLH1 DLPFC 2.840 2.10 × 10−10 0.001 0.069 1.071

GATAD2A DLPFC −0.044 2.18 × 10−10 0.071 −0.012 0.988

METTL1 DLPFC 9.357 2.23 × 10−10 0.000 0.166 1.181

DMC1 DLPFC 7.229 4.48 × 10−10 0.000 0.130 1.139

RAD51D DLPFC 7.612 2.11 × 10−09 0.000 0.111 1.117

RERE DLPFC 2.847 6.32 × 10−09 0.000 0.036 1.037

PCCB DLPFC −0.044 2.05 × 10−08 0.054 −0.010 0.990

CLCN3 DLPFC 0.141 2.96 × 10−08 0.005 0.010 1.010

ATG101 DLPFC 8.086 4.90 × 10−08 0.007 0.695 2.005

JRK DLPFC 0.032 1.25 × 10−07 0.091 0.010 1.010

PTPRU DLPFC −0.077 1.60 × 10−07 0.016 −0.010 0.990

MARCKS DLPFC 0.398 2.05 × 10−07 0.001 0.015 1.015

TCF4 Anterior cingulate 
cortex

−0.059 5.22 × 10−13 0.051 −0.013 0.987

DGKD Anterior cingulate 
cortex

−0.937 2.63 × 10−11 0.001 −0.022 0.979

C1QTNF4 Anterior cingulate 
cortex

−0.173 1.37 × 10−09 0.010 −0.017 0.983

PITPNA Anterior cingulate 
cortex

−0.243 1.77 × 10−07 0.002 −0.010 0.990

FXR1 Caudate basal 
ganglia

0.439 5.40 × 10−12 0.001 0.017 1.017

ZDHHC1 Caudate basal 
ganglia

0.354 5.36 × 10−08 0.001 0.011 1.012

PDE4D Cerebellar 
hemisphere

0.365 6.81 × 10−11 0.001 0.013 1.013

Continued
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repeated this analysis for genes identified in S-PrediXcan analy-
ses of 66 publicly available GWAS datasets. SCZ mouse lines had 
higher levels of nervous system (40.5% vs. 37.6%), behavioral 

(35.1% vs. 32.0%), and eye/vision phenotypes (29.7% vs. 17.0%) 
compared with these ‘baseline’ GWAS comparisons. SCZ mouse 
lines also had higher rates of embryonic phenotypes, usually 

Gene name Tissue BETA P value GVAR Adjusted BETA Adjusted OR

DRD2 Cerebellar 
hemisphere

−0.182 2.47 × 10−10 0.004 −0.012 0.988

PITPNM2 Cerebellar 
hemisphere

−0.065 2.21 × 10−09 0.028 −0.011 0.989

RINT1 Cerebellar 
hemisphere

0.086 6.32 × 10−09 0.016 0.011 1.011

SRMS Cerebellar 
hemisphere

−0.440 3.08 × 10−08 0.001 −0.011 0.989

SETD6 Cerebellar 
hemisphere

−0.043 1.05 × 10−07 0.054 −0.010 0.990

APOPT1 Cortex −0.074 1.24 × 10−10 0.026 −0.012 0.988

VSIG2 Cortex −0.092 6.01 × 10−09 0.013 −0.011 0.989

SDCCAG8 Cortex −0.069 3.88 × 10−07 0.002 −0.003 0.997

PIK3C2A Cortex −0.040 4.04 × 10−07 0.365 −0.024 0.976

AS3MT Frontal cortex 0.594 5.65 × 10−17 0.001 0.017 1.017

FOXN2 Hippocampus −0.250 2.65 × 10−07 0.021 −0.036 0.964

RASIP1 Nucleus 
accumbens basal 
ganglia

0.055 3.80 × 10−08 0.034 0.010 1.010

TCF23 Nucleus 
accumbens basal 
ganglia

−0.076 4.83 × 10−08 0.019 −0.010 0.990

TTC14 Nucleus 
accumbens basal 
ganglia

−0.089 4.84 × 10−08 0.013 −0.010 0.990

TYW5 Putamen basal 
ganglia

−0.080 2.63 × 10−13 0.035 −0.015 0.985

SNX19 Putamen basal 
ganglia

0.031 1.31 × 10−12 0.179 0.013 1.013

CIART Putamen basal 
ganglia

0.090 6.78 × 10−10 0.017 0.012 1.012

SH2D7 Putamen basal 
ganglia

0.096 7.89 × 10−09 0.013 0.011 1.011

DGUOK Putamen basal 
ganglia

0.255 8.26 × 10−08 0.002 0.011 1.011

C12orf76 Putamen basal 
ganglia

0.031 2.27 × 10−07 0.095 0.010 1.010

LRRC37A Putamen basal 
ganglia

−0.035 2.69 × 10−07 0.076 −0.010 0.991

AC005841.1 Pituitary 0.162 3.28 × 10−09 0.005 0.011 1.011

RPS17 Pituitary 0.035 4.03 × 10−08 0.082 0.010 1.010

Associations in the MHC region

BTN1A1 Caudate basal 
ganglia

−0.261 1.67 × 10−22

VARS2 Anterior cingulate 
cortex

0.075 7.48 × 10−15

HIST1H3H Putamen basal 
ganglia

−1.106 3.22 × 10−10

NUDT3 Nucleus 
accumbens basal 
ganglia

0.104 6.55 × 10−9

Sixty-seven non-MHC genes are significantly associated with SCZ following conditional analysis. Effect sizes (BETA) refer to predicted GREX in cases compared with controls. Effect sizes and odds ratios 
are also shown adjusted to ‘unit’ variance in gene expression. OR, odds ratio; DLPFC, dorso-lateral prefrontal cortex; GVAR, genetic variance.

Table 1 | SCZ-associated genes following conditional analysis (Continued)
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indicative of homozygous lethality or mutations incompatible with 
life (27.0% vs. 21.1%).

Distinct pattern of SCZ risk throughout development. We 
assessed expression of our SCZ-associated genes throughout 
development using BrainSpan52. Data were partitioned into eight 
developmental stages (four prenatal, four postnatal), and four 
brain regions31,52 (Fig. 3a). SCZ-associated genes were significantly 
coexpressed in both prenatal and postnatal development and in 
all four brain regions, based on local connectedness53 (Fig. 3b), 
global connectedness53 (that is, average path length between genes; 
Supplementary Fig. 5), and network density (that is, number of 
edges; Supplementary Fig. 6). Examining pairwise gene expression 
correlation (Supplementary Fig. 7) and gene coexpression networks 

(Supplementary Fig. 8) for each spatiotemporal point indicated that 
the same genes do not drive this coexpression pattern throughout 
development, but rather, it appears that separate groups of genes 
drive early prenatal, late prenatal, and postnatal clustering.

To visualize this, we calculated z scores measuring the spatio-
temporal specificity of gene expression for each SCZ-associated 
gene, across all 32 time points (Fig. 4). Genes clustered into four 
groups (Supplementary Fig. 9) with distinct spatiotemporal expres-
sion signatures. The largest cluster (cluster A, Fig. 4a, 29 genes) 
spanned early to late mid-prenatal development (4–24 weeks post 
conception (p.c.w.)), either across the whole brain (22 genes) or 
in regions 1–3 only (seven genes). Twelve genes were expressed in 
late prenatal development (Fig. 4d; 25–38 p.c.w.), ten genes were 
expressed in regions 1–3, postnatally and in the late prenatal period 

Table 2 | Significantly enriched pathways and gene sets

Analysis Gene set Comp P value FDR P value

Hypothesis driven FMRP targets 1.96 × 10−08 3.097 × 10−06

BP de novo CNV 7.92 × 10−08 6.257 × 10−06

HIGH LOF intolerant 5.86 × 10−05 0.00309

Agnostic Increased spleen iron level 2.72 × 10−08 0.000245

Decreased IgM level 6.80 × 10−07 0.00307

Condensed chromosome 1.99 × 10−06 0.00598

Chromosome 2.80 × 10−06 0.00632

Abnormal spleen iron level 6.79 × 10−06 0.00765

Mitotic anaphase 6.39 × 10−06 0.00765

Mitotic metaphase and anaphase 5.13 × 10−06 0.00765

Resolution of sister chromatid cohesion 5.82 × 10−06 0.00765

Increased liver iron level 1.03 × 10−05 0.0103

Separation of sister chromatids 1.28 × 10−05 0.0115

Regulation of Rab GTPase activity 1.78 × 10−05 0.0123

Regulation of Rab protein signal transduction 1.78 × 10−05 0.0123

Protein phosphorylated amino acid binding 1.75 × 10−05 0.0123

Chromosome 2.57 × 10−05 0.0165

Hexosaminidase activity 3.47 × 10−05 0.0174

Abnormal learning memory conditioning 3.11 × 10−05 0.0174

Abnormal liver iron level 3.47 × 10−05 0.0174

Mitotic prometaphase 2.99 × 10−05 0.0174

M phase 3.70 × 10−05 0.0176

Positive regulation of Rab GTPase activity 5.93 × 10−05 0.0232

Rab GTPase activator activity 5.93 × 10−05 0.0232

Protein phosphatase type 2A regulator activity 5.24 × 10−05 0.0232

Replicative senescence 5.44 × 10−05 0.0232

Condensed nuclear chromosome 7.11 × 10−05 0.0267

Ubiquitin-specific protease activity 0.000104 0.0335

Ras GTPase activator activity 9.61 × 10−05 0.0335

Metabolism of porphyrins 0.000103 0.0335

Kinetochore 0.000103 0.0335

Decreased physiological sensitivity to xenobiotic 0.000127 0.0381

Antigen activates B cell receptor leading to 
generation of second messengers

0.000124 0.0381

Phosphoprotein binding 0.000146 0.0424

Abnormal dorsal-ventral axis patterning 0.000152 0.0429

We tested for enrichment of 8,657 pathways among our prediXcan results, using a competitive P value in MAGMA and calculated an FDR-corrected P value to determine significance. FMRP, fragile-X 
mental retardation protein; BP, bipolar; CNV, copy number variant; LOF, loss of function.
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(Fig. 4c), and 15 genes were expressed throughout development 
(Fig. 4b), either specifically in region 4 (nine genes) or throughout 
the brain (six genes).

In order to probe the biological relevance of our four 
BrainSpan clusters, we compared these gene lists to known and 
candidate gene sets with relevance to SCZ54. Genes in clusters A 
and B (clusters with prenatal expression) were involved in brain 
morphology and development, nervous system development, 
neuron development and morphology, and synaptic develop-
ment, function, and morphology (Supplementary Table 4). These 
associations were not seen in clusters C and D (genes with late 
prenatal and postnatal expression).

We noticed a relationship between patterns of gene expression 
and the likelihood of behavioral, neurological, or related phenotypes 
in our mutant mouse model database. Mutant mice lacking genes 

expressed exclusively prenatally in humans, or genes expressed 
pre- and postnatally, were more likely to have any behavioral or 
neurological phenotypes than mutant mice lacking expression 
of genes expressed primarily in the third trimester or postnatally 
(P = 1.7 × 10−4) (Supplementary Fig. 10).

Discussion
In this study, we present DLPFC gene expression prediction models, 
constructed using CommonMind Consortium genotype and gene 
expression data. These prediction models may be applied to either 
raw data or summary statistics, in order to yield tissue-specific gene 
expression information in large data sets. This allows researchers to 
access transcriptome data for non-peripheral tissues at scales currently 
prohibited by the high cost of RNA-seq and circumvents distortions in 
measures of gene expression stemming from errors of measurement or 
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Fig. 3 | SCZ-associated genes are coexpressed throughout development and across brain regions. a, Brain tissues selected for each of four BrainSpan 
regions. BrainSpan includes 525 samples from 43 unique individuals. IPC, inferior parietal cortex; V1C, primary visual cortex; ITC, inferior temporal cortex; 
OFC, orbital frontal cortex; STC, posterior (caudal) superior temporal cortex; A1C, primary auditory cortex; S1C, primary somatosensory cortex; M1C, 
primary motor cortex; DFC, dorsolateral prefrontal cortex; VFC, ventrolateral prefrontal cortex; MFC, medial prefrontal cortex; HIP, hippocampus; AMY, 
amygdala; STR, striatum; CB, cerebellum. Region 1: IPC, V1C, ITC, OFC, STC, A1C; region 2: S1C, M1C, DFC, VFC, MFC; region 3: HIP, AMY, STR; region 4: 
CB. b, Average clustering coefficients were calculated for all pairs of SCZ-associated genes, and compared with average clustering coefficients for 100,000 
permuted gene networks to obtain empirical significance levels.
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environmental influences. As disease status may alter gene expression 
but not the germline profile, analyzing genetically regulated expression 
ensures that we identify only the causal direction of effect between gene 
expression and disease15. Large, imputed transcriptomic datasets rep-
resent the first opportunity to study the role of subtle gene expression 
changes (and therefore modest effect sizes) in disease development.

There are some inherent limitations to this approach. The 
accuracy of transcriptomic imputation is reliant on access to large 
eQTL reference panels, and it is therefore vital that efforts to col-
lect and analyze these samples continue. Transcriptomic imputation 
has exciting advantages for gene discovery as well as downstream 
applications15,55,56; however, the relative merits of existing method-
ologies are as yet underexplored. Here, sparser elastic net models 
better captured gene expression regulation than BSLMM; at the 
same time, the improved performance of elastic net over max-eQTL 
models suggests that a single eQTL model is oversimplified2,15. 
Fundamentally, transcriptomic imputation methods model only the 
genetically regulated portion of gene expression and thus cannot 
capture or interpret variance of expression induced by environment 
or lifestyle factors, which may be of particular importance in psy-
chiatric disorders. Given the right study design, analyzing genetic 
components of expression together with observed expression could 
open doors to better study the role of gene expression in disease.

Sample size and tissue matching contribute to accuracy of tran-
scriptomic imputation results. Our CMC-derived DLPFC predic-
tion models had higher average validation R2 values in external 
DLPFC data than GTEx-derived brain tissue models. Notably, the 
model with the second highest percent of genes passing the R2 
threshold is the thyroid, which has the largest sample size among 
the GTEx brain prediction models. When looking at mean R2 val-
ues, the second highest value comes from the GTEx frontal cortex, 
despite the associated small sample size, implying at least some 
degree of tissue specificity of eQTL architecture.

We compared transcriptomic imputation accuracy in European 
and African American individuals and found that our models were 
applicable to either ancestry with only a small decrease in accuracy. 
Common SNPs shared across ancestries have important effects on 
gene expression, and as such, we expect GREX to have consistency 
across populations. There is a well-documented dearth of explora-
tion of genetic associations in non-European cohorts57,58. We believe 
that these analyses should be carried out in non-European cohorts.

We applied the CMC DLPFC and GTEx-derived prediction  
models to SCZ cases and controls from the PGC2 and CLOZUK2 
collections, constituting a large transcriptomic analysis of schizo-
phrenia. Predicted gene expression levels were calculated for 19,661 
unique genes across brain regions (Fig. 1c) and tested for association 
with SCZ case–control status. We identified 413 significant associa-
tions, constituting 67 independent associations. We found significant 
replication of our CMC DLPFC associations in a large independent 
replication cohort, in collaboration with the iPSYCH-GEMS con-
sortium. Our prediXcan results were significantly correlated with 
colocalization estimates (‘PP4’) from COLOC. Importantly, GWAS 
loci with no significant prediXcan associations also had no evidence 
for colocalization with eQTLs. Together, these results imply that our 
prediXcan associations identify genes with good evidence for colo-
calization between GWAS and eQTL architecture, and are not con-
taminated by linkage disequilibrium. One caveat is that four of our 
associations (SNX19, NAGA, TYW5, and GNL3) have no evidence 
for colocalization in COLOC results, or after visual inspection of 
local GWAS and eQTL architecture, and may be false positives.

We compared our CMC DLPFC associations to results using a 
single-eQTL- based method, SMR12, in the PGC+CLOZUK SCZ 
GWAS59, which identified 12 genome-wide significant associa-
tions. All significant SMR associations were also significant in our 
DLPFC prediXcan analysis, and all directions of effect were concor-
dant between the two studies. A recent TWAS study of 30 GWAS 
summary statistic traits55 identified 38 non-MHC genes associated 
at tissue-level significance with SCZ in CMC- and GTEx-derived 
brain tissues (that is, matching those used in our study). Of these, 
26 also reach genome-wide significance in our study, although in 
many instances these genes are not identified as the lead indepen-
dent associated gene following our conditional analysis. Among our 
67 SCZ-associated genes, 19 were novel, that is, did not fall within 
1 Mb of a previous GWAS locus (including five of seven novel brain 
genes identified in the recent TWAS analysis).

We used conditional analyses to identify independent associa-
tions within loci. These analyses clarify the most strongly associ-
ated genes and tissues (Table 1), though we note that nearly colinear 
gene–tissue pairs could also represent causal associations. The 
tissues highlighted allowed us to tabulate apparently indepen-
dent contributions to SCZ risk from different brain regions, even 
though their transcriptomes are highly correlated generally. We find 
DLPFC and cerebellum effects, as well as from putamen, caudate, 
and nucleus accumbens basal ganglia. One caveat here is that tissue 
associations are likely driven by sample size of the eQTL reference 
panel, as well as biology. It is likely that the large sample size of the 
DLPFC reference panel contributes partially to the greater signal 
identified in the DLPFC.

We used these genic associations to search for enrichments with 
molecular pathways and gene sets and identified 36 significantly 
enriched pathways. Among novel pathways, we identified a signifi-
cant association with HEX-A deficiency. Despite the well-studied 
and documented symptomatic overlap between adult-onset HEX-A 
deficiency and SCZ, we believe that this is the first demonstra-
tion of shared genetics between the disorders. Notably, this over-
lap is not driven by a single highly associated gene that is shared  
by both disorders, but rather, every single gene in the HEX-A  
pathway is nominally significant in the SCZ association analy-
sis, and five genes have P < 1 × 10−3, indicating that there may be  
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substantial shared genetic etiology between the two disorders  
that warrants further investigation. Additionally, we identified  
a significant overlap between our SCZ-associated genes and a 
number of pathways associated with porphyrin metabolism. 
Porphyric disorders have been well characterized and are among 
early descriptions of ‘schizophrenic’ and psychotic presentations of 
SCZ, as described in the likely eponymous mid-19th century poem 
‘Porphyria’s Lover’, by Robert Browning60, and have been cited as a 
likely diagnosis for the various psychiatric and metabolic ailments 
of Vincent van Gogh61–66 and King George III (ref. 67).

Finally, we assessed patterns of expression for the 67 SCZ-
associated genes throughout development using spatiotemporal 
transcriptomic data obtained from BrainSpan. We identified four 
clusters of genes, with expression in four distinct spatiotemporal 
regions, ranging from early prenatal to strictly postnatal expression. 
There are plausible hypotheses and genetic evidence for SCZ disease 
development in adolescence, given the correlation with age of onset, 
as well as prenatally, supported by genetic overlap with neurode-
velopmental disorders68–70 and the earlier onset of cognitive impair-
ments71–74. Understanding the temporal expression patterns of 
SCZ-associated genes can help to elucidate gene development and 
trajectory and inform research and analysis design. Identification of 
SCZ-associated genes primarily expressed prenatally is notable given 
our adult eQTL reference panels and may reflect common eQTL 
architecture across development, which is known to be partial75–77;  
therefore, our results should spur interest in extending transcrip-
tomic imputation data and/or methods to early development75. 
Identification of SCZ-associated genes primarily expressed in ado-
lescence and adulthood is of particular interest for direct analysis of 
the brain transcriptome in adult psychiatric cases.

eQTL data have been recognized for nearly a decade as poten-
tially important for understanding complex genetic variation. 
Nicolae et al.1 showed that common variant-common disease asso-
ciations are strongly enriched for genetic regulation of gene expres-
sion. Therefore, integrative approaches combining transcriptomic 
and genetic association data have great potential. Current transcrip-
tomic imputation association analyses increase power for genetic 
discovery, with great potential for further development, including 
leveraging additional data types such as chromatin modifications78 
(for example, methylation or histone modification), imputing dif-
ferent tissues or different exposures (for example, age, smoking, or 
trauma) and modeling trans/coexpression effects. It remains criti-
cal to leverage transcriptomic imputation associations to provide 
insights into specific disease mechanisms. Here, the accelerated 
identification of disease-associated genes allows the detection of 
novel pathways and distinct spatiotemporal patterns of expression 
in SCZ risk.

URLs. ‘CoCo’, an R implementation of GCTA-COJO, https://github.
com/theboocock/coco/; Gene2pheno, gene2pheno.org; publicly 
available whole-blood-derived S-PrediXcan results (as of March 
2018), https://github.com/laurahuckins/CMC_DLPFC_prediXcan.
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Methods
Creating gene expression predictors for the dorsolateral prefrontal cortex. eQTL 
data. Genotype and RNA-seq data were obtained for 538 European individuals 
through the CommonMind Project14. The mean age of these individuals was 
67.4 years. RNA-seq data were generated from post-mortem human dorsolateral 
prefrontal cortex (DLPFC). The gene expression matrix was normalized to 
log(counts per million) using voom. Adjustments were made for known covariates 
(including sample ascertainment, quality, experimental parameters, ancestry) and 
surrogate variables, using linear modeling with voom-derived regression weights. 
Details on genotyping, imputation and RNA-seq generation can be found in the 
CommonMind Consortium (CMC) flagship paper14.

The samples used here include 254 SCZ and 52 bipolar cases, as well as 
controls. The CMC flagship paper14 applied a permutation test and an explicit 
disease-genotype interaction term to demonstrate that there is no significant effect 
of disease on eQTLs. We have therefore included both cases and controls in this 
analysis, to maximize sample size.

A 1% minor allele frequency (MAF) cutoff was applied. Variants were filtered 
to remove any SNPs in high linkage disequilibrium (r2 > 0.9), indels, and all 
variants with ambiguous ref/alt alleles. All protein coding genes on chromosomes 
1–22 with at least one cis-SNP after these quality control steps were included in 
this analysis (15,362 genes in total). SNPs in trans have been shown not to provide 
a substantial improvement in prediction accuracy15 and were not included here.

Building gene expression prediction databases. Gene expression prediction 
models were created following the ‘PrediXcan’ method15. Matched genotype and 
gene expression data were used to identify a set of variants that influence gene 
expression (Supplementary Fig. 2a). Weights for these variants are calculated using 
regression in a ten-fold cross-validation framework. All cross-validation folds were 
balanced for diagnoses, ancestry, and other clinical variables.

All SNPs within the cis-region (± 1 Mb) of each gene were included in 
the regression analysis. Accuracy of prediction was estimated by comparing 
predicted expression to measured expression, across all ten cross-validation folds; 
this correlation was termed cross-validation R2 or Rcv

2. Genes with Rcv
2 > 0.01 

(~P < 0.05) were included in our final predictor database.
Prediction models were compared across four different regression methods, 

elastic net (prediXcan), ridge regression (using the TWAS method16), Bayesian 
sparse linear mixed modeling (BSLMM; TWAS), and linear regression, using 
the best eQTL for each gene (Supplementary Fig. 1a). Mean Rcv

2 values were 
significantly higher for elastic net regression (mean Rcv

2 = 0.056) than for eQTL-
based prediction (mean Rcv

2 = 0.025), BSLMM (mean Rcv
2 = 0.021) or ridge 

regression (mean Rcv
2 = 0.020). The distribution of Rcv

2 values was also significantly 
higher for elastic net regression than for any other method (Kolmogorov–Smirnov 
test, P < 2.2 × 10−16).

Replication of gene expression prediction models in independent data. 
Predictive accuracy of CMC DLPFC models were tested in two independent  
data sets.

First, we used data from the Religious Orders Study and Memory and Aging 
Project (ROSMAP19,20). This study included genotype data and DLPFC RNA-seq 
data for 451 individuals of European descent (Supplementary Fig. 2b).

DLPFC GREX was calculated using the CMC DLPFC predictor models. 
Correlation between RNA-seq expression and CMC DLPFC GREX (‘replication 
R2 values’ or RR

2) was used as a measure of predictive accuracy. RR
2 was calculated 

including correction for ten ancestry components, as follows:
RR

2 calculation:

= ~ + + + … +
= ~ + + … +
= −
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M Measured expression (RNA seq)
GREX GREX imputed expression

PC principal componentn
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A small number of genes (158) had very low predictive accuracy and were 
removed from further analyses. Cross-validation R2 (Rcv

2) values and RR
2 values 

were highly correlated (ρ = 0.62, P < 2.2 × 10−16; Supplementary Fig. 3a). 55.7% of 
CMC DLPFC genes had RR

2 values > 0.01.
Prediction accuracy was also assessed for 11 publicly available GTEx 

neurological predictor databases, and RR
2 values were used to compare with CMC 

DLPFC performance. CMC DLPFC models had higher average RR
2 values, more 

genes with RR
2 > 0.01, and significantly higher overall distributions of RR

2 values 
than any of the 12 GTEx brain tissue models (KS test, P < 2.2 × 10−16; Fig. 1a,b).

To estimate trans-ancestral prediction accuracy, GREX was calculated for 162 
African American individuals and 280 European individuals from the NIMH 

Human Brain Collection Core (HBCC) dataset (Supplementary Fig. 2c). Predicted 
gene expression levels were compared to DLPFC expression levels measured using 
microarray. There was a significant correlation between the European and African 
American samples for RCV

2 values and RR
2 values (ρ = 0.66, 0.56; Supplementary 

Fig. 3b,c). RR
2 values were higher on average in Europeans, but were significantly 

correlated between African Americans and Europeans (ρ = 0.78, P < 2.2 × 10−16, 
Pearson test; Supplementary Fig. 3d).

Extension to summary statistics. Transcriptomic imputation may be applied 
to summary statistics instead of raw data, in instances where raw data are 
unavailable. However, this method suffers from slightly reduced accuracy, 
requires covariance matrices calculated in an ancestrally matched reference 
population24 (usually only possible for European cohorts), and precludes testing 
of endophenotypes within the data, and so should not be applied when raw  
data are available.

We assessed concordance between CMC DLPFC transcriptomic imputation 
results using summary statistics (S-PrediXcan24) and raw genotypes (PrediXcan15) 
using nine European and three Asian PGC-SCZ cohorts22 for which both data 
types were available. Cohorts were chosen to encompass a range of case/control 
ratios, to test previous suggestions that accuracy is reduced in unbalanced 
cohorts24. Covariances for all variants included in the DLPFC predictor models 
were computed using S-PrediXcan24. For all European cohorts, Pearson correlation 
of log10P values and effect sizes was above 0.95. The mean correlation was 0.963 
(Supplementary Fig. 11). There was no correlation between total sample size, case/
control ratio, P value or effect size. Seven genes were removed due to discordant 
P values. For the three Asian cohorts tested, the mean correlation was 0.91 
(Supplementary Fig. 12).

Concordance was also tested for the same nine European PGC-SCZ cohorts, 
across 12 neurological GTEx prediction databases. All correlations were significant 
(ρ > 0.95, P < 2.2 × 10−16). There was a significant correlation between P-value 
concordance and case/control ratio (ρ = 0.37, P = 7.606 × 10−15). 114 genes  
had discordant P values between the two methods and were excluded from  
future analyses.

Application to schizophrenia. Dataset collection. We obtained 53 discovery 
cohorts for this study, including 40,299 SCZ cases and 65,264 controls 
(Supplementary Fig. 4). Of 53 cohorts, 52 (35,079 cases, 46,441 controls) were 
obtained through collaboration with the Psychiatric Genomics Consortium and 
are described in the 2014 PGC SCZ GWAS22. The remaining cohort, referred to 
as CLOZUK2, constitutes the largest single cohort of individuals with SCZ (5,220 
cases and 18,823 controls), collected as part of an effort to investigate treatment-
resistant SCZ59.

Of 53 datasets, 50 included individuals of European ancestry, and three datasets 
included individuals of Asian ancestry (1,836 cases, 3,383 controls). All individuals 
were ancestrally matched to controls. Information on genotyping, quality control, 
and other data management issues may be found in the original papers describing 
these collections22,59. All sample collections complied with ethical regulations. 
Details regarding ethical compliance and consent procedures may be found in the 
original manuscripts describing these collections22,59.

Access to dosage data was available for 44/52 PGC-SCZ cohorts. The remaining 
PGC cohorts and the CLOZUK2 cohort provided summary statistics. Three 
European PGC cohorts were trio-based, rather than case–control.

Additionally, we tested for replication of our CMC DLPFC associations in 
an independent dataset of 4,133 cases and 24,788 controls obtained through 
collaboration with the iPSYCH-GEMS SCZ working group (effective sample size 
14,169.5; Supplementary Fig. 4b, Supplementary Note).

Transcriptomic imputation and association testing. Transcriptomic imputation 
was carried out individually for each case–control PGC-SCZ cohort with available 
dosage data (44/52 cohorts). Predicted gene expression levels were computed using 
the DLPFC predictors described in this manuscript, as well as for 11 other brain 
tissues prediction databases created using GTEx tissues (http://gtexportal.org/
home/documentationPage)15,21,79 (Fig. 1c). Associations between predicted gene 
expression values and case–control status were calculated using a linear regression 
test in R. Ten ancestry principal components were included as covariates. 
Association tests were carried out independently for each cohort, across  
12 brain tissues.

For the eight PGC cohorts with no available dosage data, the three PGC 
trio-based analyses, and the CLOZUK2 cohort, a summary-statistic-based 
transcriptomic imputation approach was used (‘S-PrediXcan24’), as  
described previously.

Meta-analysis. Meta-analysis was carried out across all 53 cohorts using METAL80. 
Cochran’s Q test for heterogeneity was implemented in METAL80,81, and a 
heterogeneity P-value threshold of P > 1 × 10−3 applied to results. A conservative 
significance threshold was applied to these data, correcting for the total number of 
genes tested across all tissues (121,611 gene-region tests in total). This resulted in a 
genome-wide significance threshold of 4.1 × 10−7.
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expression throughout development and across brain regions. Clusters were 
formally identified using a dendrogram cut at height 10 (Supplementary Fig. 9).

In silico replication of SCZ-associated genes in mouse models. We downloaded 
genotype, knock-out allele information, and phenotyping data for ~10,000 
mouse mutant models from five large mouse phenotyping and genotyping 
projects; Mouse Genome Informatics (MGI51), EuroPhenome48,93, Mouse Genome 
Project (MGP48,49), International Mouse Phenotyping Consortium (IMPC94), 
and Infection and Immunity Immunophenotyping (3I94). Where possible, we 
also downloaded raw phenotyping data regarding specific assays. In total, we 
obtained 175,012 phenotypic measurements, across 10,288 mutant mouse models. 
We searched for any mouse lines with phenotypes related to behavior (natural, 
observed, stereotypic, or assay induced); cognition or working memory; brain, 
head, or craniofacial dysmorphology; retinal or eye morphology, and/or vision 
or visual dysfunction or impairment; ear morphology or hearing dysfunction 
or impairment; neural tube defects; brain and/or nervous system development; 
abnormal nociception.

We calculated the rate of phenotypic abnormalities in all mouse lines with 
reduced expression of genes identified in our prediXcan analysis (‘SCZ-associated 
mouse lines’). We compared these to (1) the ‘baseline’ rate of phenotypic 
abnormalities across all 10,288 mouse lines; and (2) the rate of abnormalities in 
mouse lines associated with other disorders. To do this, we downloaded all publicly 
available whole-blood-derived S-PrediXcan results (as of March 2018, see URLs). 
In total, we obtained data for 1,907 genes reaching P < 5 × 10−6, across 65 studies. 
We calculated rates of phenotypic abnormalities for each of these 65 studies.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Our CMC-derived DLPFC prediction models are publicly available at https://
github.com/laurahuckins/CMC_DLPFC_prediXcan.
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Effect sizes and direction of effect quoted in this manuscript refer to changes 
in predicted expression in cases compared to controls, that is, genes with negative 
effect sizes have decreased predicted expression in cases compared to controls.

Identifying independent associations. We identified a number of genomic 
regions which contained multiple gene associations and/or genes associated across 
multiple tissues. We identified 58 of these regions, excluding the MHC, based on 
distance between associated genes, and verified them using visual inspection. In 
order to identify independent genic associations within these regions, we carried 
out a stepwise forward conditional analysis following ‘GCTA-COJO’ theory82 
using ‘CoCo’ (see URLs), an R implementation of GCTA-COJO. CoCo allows the 
specification of custom correlation matrices by the user (for example, ancestrally 
specific LD matrices). For each region, we generated a predicted gene expression 
correlation matrix for all significant genes (p ≤ 1 × 10−6), as the root-effective 
sample size80 (Neff, equation (2)) weighted average correlation across all cohorts 
where we had access to dosage data.

Effective sample size, Neff:

=
+( )

N 4
(2)eff 1

N
1

Ncases controls

Forward stepwise conditional analysis of all significant genes was carried out 
using joint linear regression modeling. First, the top-ranked gene was added to the 
model, then the next most significant gene in a joint model is added if significant at 
a given P-value threshold and so on until either all genes are added to the model or 
no joint statistic reaches the significance threshold.

We calculated effect sizes and odds ratios for SCZ-associated genes by adjusting 
‘CoCo’ betas to have unit variance (Table 1, equation (3)).

GREX beta adjustment:

β = β × GVAR (3)CoCo

where GVAR is the variance of the GREX predictor for each gene.

Gene set analyses. Pathway analyses were carried out using an extension to 
MAGMA83. P values were assigned to genes using the most significant P value 
achieved by each gene in the meta-analysis. We then carried out a competitive gene 
set analysis test using these P values, using two gene sets:

	1.	 159 gene sets with prior hypotheses for involvement in SCZ development, 
including loss-of-function intolerant genes, CNV-intolerant genes, targets 
of the fragile-X mental retardation protein, CNS-related gene sets, and 104 
behavioral and neurological pathways from the Mouse Genome Informatics 
database14,59,68,84.

	2.	 An agnostic analysis, including ~8,500 gene sets collated from publicly avail-
able databases including GO85,86, KEGG87, REACTOME88, PANTHER89,90, 
BIOCARTA (MSigDB Collections, 2017), and MGI51. Sets were filtered to 
include only gene sets with at least ten genes.

Significance levels were adjusted across all pathways included in either test 
using the Benjamini–Hochberg ‘FDR’ correction in R26.

Coexpression of SCZ genes throughout development. We investigated 
spatiotemporal expression of our associated genes using publicly available 
developmental transcriptome data, obtained from the BrainSpan consortium52. 
We partitioned these data into biologically relevant spatiotemporal data sets91, 
corresponding to four general brain regions, the frontal cortex, temporal and 
parietal regions, sensory-motor regions, and subcortical regions92 (Fig. 3a), and 
eight developmental time points (four prenatal, four postnatal)91.

First, we tested for correlation of gene expression for all SCZ-associated genes 
at each spatiotemporal time point. Genes with Pearson correlation coefficients 
≥0.8 or ≤−0.8 were considered coexpressed. 100,000 iterations of this analysis 
were carried out using random gene sets with equivalent expression level 
distributions to the SCZ-associated genes. For each gene set, a gene coexpression 
network was created, with edges connecting all coexpressed genes. Networks 
were assessed using three criteria: first, the number of edges within the network, 
as a crude measured of connectedness; second, the Watts–Strogatz average path 
length between nodes, as a global measure of connectedness across all genes in the 
network53; third, the Watts–Strogatz clustering coefficient, to measure tightness 
of the clusters within the network53. For each spatiotemporal time point, we 
plotted gene-pair expression correlation (Supplementary Fig. 7) and coexpression 
networks (Supplementary Fig. 8).

For each of the 67 SCZ-associated genes, we calculated average expression at 
each spatiotemporal point. We then calculated z score of expression specificity 
using these values and plotted z scores to visually examine patterns of gene 
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    Experimental design
1.   Sample size

Describe how sample size was determined. All available schizophrenia cases and controls in the Psychiatric Genomics 
Consortium (PGC) and CLOZUK2 studies were used in this study.

2.   Data exclusions

Describe any data exclusions. No data were excluded

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

We sought replication of our CMC DLPFC SCZ-associations in an independent 
dataset of 4,133 cases and 24,788 controls in collaboration with the iPSYCH-GEMS 
SCZ working group. We tested for replication of all Bonferroni-significant genes 
identified in our CMC-DLPFC analysis. Of 100 genes, 12 replicated in the iPSYCH-
GEMS data, significantly more than might be expected by chance (binomial test, 
p=0.0043). 

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Cases and controls are organized into ancestrally-matched cohorts. These 
matchings were carried out by the PGC and CLOZUK2  groups. 

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Not applicable to this study. This is a secondary analysis, using existing data from 
schizophrenia case-control consortia, and publicly available transcriptome data. 
We did not collect samples at any stage. 

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

PrediXcan and MetaXcan Python code, publicly available through github: https://
github.com/hakyimlab/PrediXcan 
GTEX models version 6 were used. 
Some custom code was used to make PrediXcan compliant with PGC data formats. 
Code will be made available on request. 

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

Summary statistics are publcily available. Genotypes are available to approved 
researchers through collaboration with the PGC and CLOZUK2 groups

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. NA

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

NA

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

NA

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No research animals were used. 

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

We obtained 53 discovery cohorts for this study, including 40,299 SCZ cases and 
65,264 controls (Figure 2). 52/53 cohorts (35,079 cases, 46,441 controls) were 
obtained through collaboration with the Psychiatric Genomics Consortium, and are 
described in the 2014 PGC Schizophrenia GWAS22. The remaining cohort, referred 
to as CLOZUK2, constitutes the largest single cohort of individuals with 
Schizophrenia (5,220 cases and 18,823 controls), collected as part of an effort to 
investigate treatment-resistant Schizophrenia.  
 
50/53 datasets included individuals of European ancestry, while three datasets 
include individuals of Asian ancestry (1,836 cases, 3,383 controls). All individuals 
were ancestrally matched to controls. Information on genotyping, quality control 
and other data management issues may be found in the original papers describing 
these collections. Specifically, please see: https://www.nature.com/article-assets/
npg/nature/journal/v511/n7510/extref/nature13595-s1.pdf 
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