
The classical twin design (CTD) is the most
common method used to infer genetic and envi-

ronmental causes of phenotypic variation. As has
long been acknowledged, different combinations of
the common environment/assortative mating, and
additive, dominant, and epistatic genetic effects can
lead to the same observed covariation between twin
pairs, meaning that there is an inherent indetermi-
nacy in parameter estimates arising from the CTD.
The CTD circumvents this indeterminacy by assum-
ing that higher-order epistasis is negligible and that
the effects of either dominant genetic variation or the
common environment are nonexistent. These
assumptions, however, lead to consistent biases in
parameter estimation. The current paper quantifies
these biases and discusses alternative strategies for
dealing with parameter indeterminacy in twin
designs. One strategy is to model the similarity
among other relatives in addition to twins (extended
twin-family designs), which reduces but does not
eliminate indeterminacy in parameter estimates. A
more general strategy, applicable to all twin designs,
is to present the parameter indeterminacy explicitly,
as in a graph. Presenting the space of mathematically
equally likely parameter values is important, not only
because it aids the proper interpretation of twin
design findings, but also because it keeps behavioral
geneticists themselves mindful of methodological
assumptions that can easily go unexamined.

At the heart of all twin designs is the comparison
between MZ (monozygotic) and DZ (dizygotic) twin
similarities. The most common of these designs, the
classical twin design (CTD), compares only MZ and
DZ twins reared together, and has been the mainstay of
efforts to understand the genetic and environmental
causes of behavior in humans over the last 30 years.
The popularity of the CTD is attributable not only to
its ability to inform the degree of genetic and environ-
mental causes of variation in traits, but also to its
convenience: MZ and DZ twins reared together are
easier to find than other types of genetically informa-
tive relatives, such as randomly placed adopted twins.
Because of this, very large twin registries in many
countries have been launched (Boomsma et al., 2002).

In some cases, follow-up efforts have gathered data
from twins’ parents, nontwin siblings, spouses, and
offspring, allowing for analyses employing the
extended twin-family design (ETFD). While the CTD
and ETFD are generally thought of as tools for dis-
cerning environmental and genetic causes of
phenotypic variation, the power afforded by the sizes
of data sets from modern twin registries have allowed
testing increasingly nuanced hypotheses involving sex
differences in genetic and environmental influences,
sibling effects, gene-by-environment interactions,
scale measurement issues, and the environmental and
genetic relationships between multiple variables
(Neale & Maes, 2004).

Despite its popularity and convenience, it has long
been understood that the CTD is limited in its ability
to distinguish many potential causes of phenotypic
variation (Eaves et al., 1978; Jinks & Fulker, 1970;
Martin et al., 1978). The CTD is unable to differenti-
ate effects of the common environment from the
effects of assortative mating, gene–environment covari-
ation, or sibling imitation. Similarly, genetic sources of
variation are confounded with gene-by-common envi-
ronment interactions, sibling competition, and with
systematic difference in the ways that MZ and DZ
twins are treated. Several of these issues have been
explored in depth and do not seem to pose problems
for interpreting CTD findings. For example, the well-
known equal environments assumption of twin
designs, whereby twins’ environments are assumed to
affect MZ and DZ twins equivalently with respect to
the phenotype in question, has repeatedly been showed
to be valid in most cases (e.g., Borkenau et al., 2002;
Kendler et al., 1993).

A problem more at the heart of twin designs,
which affects both the CTD and, to a lesser degree,
the ETFD, is their inability to fully differentiate
common environmental effects, additive genetic
effects, dominant genetic effects, and epistatic genetic
effects. Different combinations of these can lead to
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exactly the same observed data, meaning that there is
an inherent indeterminacy in parameter estimates. This
indeterminacy is the source of the mantra that nonaddi-
tive genetic and common environmental variance
parameters cannot simultaneously be estimated in the
CTD, but the issue goes much deeper than this, as has
been discussed with regard to genetic dominance (Eaves
et al., 1978; Jinks & Fulker, 1970; Martin et al., 1978)
and epistasis (Grayson, 1989).

Despite the attention the subject has received, we
argue that fruitful discussion has yet to be exhausted
regarding parameter indeterminacy in twin designs.
Because it is the most commonly used twin design, the
current paper focuses chiefly on the CTD. The accepted
method of dealing with parameter indeterminacy in the
CTD leads to consistent biases in parameter estimates.
We first quantify these biases and rectify an error in the
literature regarding parameter bias in the presence of
epistasis. We then discuss parameter indeterminacy in
the CTD and gauge which of the two causes of this
indeterminacy is the most consequential. Finally, we
discuss alternative methods of dealing with parameter
indeterminacy in the CTD — specifically, the merits of
modeling broad- rather than narrow-sense heritability,
methods of presenting parameter indeterminacy, and
ways to limit parameter indeterminacy.

Twin designs are undoubtedly useful vehicles for sci-
entific discovery, and yet, as with all scientific methods,
they are not infallible. Because twin designs are based
upon a robust theory — biometric genetics —
researchers using them have the advantage of being
able to quantify the alternative explanations for their
data. This ability, we argue, should be utilized.

The Classical Twin Design
Ignoring for the moment several complications (see
below), phenotypic variation can be separated into
additive genetic (VA), nonadditive genetic (VNA),
common environmental (VC), and unique environmen-
tal (VE) variation. Twins inform the magnitude of these
parameters because, although both types of twins share
a common familial environment, MZ twins share
100% of their genes while DZ twins share (on average)
50% of their genes. DZ twins — as opposed to
nontwin siblings — serve as natural controls for MZ
twins because both types of twins are matched for age,
the familial environment, and aspects of the environ-
ment unique to twins (including in utero effects). Thus,
the degree to which MZ twins’ resemblance exceeds
DZ twins’ resemblance probably reflects genetic varia-
tion (VG = VA + VNA). If DZ twins’ resemblance is less
than half of the MZ twins’ resemblance, an effect of
nonadditive genetic variation (VNA, referred to usually
as dominance variation, or VD) is suggested. When DZ
twins’ resemblance is more than half of the MZ twins’
resemblance, some aspect of common environmental
variation (VC) may affect the phenotype.

Several complicating factors, such as gene-by-envi-
ronment interactions, assortative mating, sibling

interaction effects, and gene–environment correlations
make the simple decomposition of variance compo-
nents outlined above difficult. Some of these issues can
be overcome using the CTD. For example, sibling inter-
action effects can be detected as a difference in total
variance between MZ and DZ twins. However, these
issues have been discussed in detail elsewhere (e.g.,
Neale & Maes, 2004), and so we limit discussion of
them except for the effect of assortative mating (‘like
marrying like’), which is confounded with the effects of
the common environment in the CTD (Eaves et al.,
1978; Neale & Maes, 2004). This occurs because
assortative mating tends to increase the genetic relation-
ship between DZ twins for the trait in question above
the expected .50 level, and thereby mimics the effects of
the common environment. Thus, VC in the CTD (and as
used in the present paper) reflects not only the effects of
the common environment, but also the genetic effects of
assortative mating. Disentangling these two aspects of
VC is not possible using the CTD.

The way that the hypothesized variance components
affect twin covariances can be quantified:

CVMZ = VP – VE  [1]

CVMZ = VA + VNA + VC [2]

CVDZ = 1⁄2VA + rVNA + VC [3]

where CVMZ is the covariance between MZ twins, CVDZ

is the covariance between DZ twins, VP is the overall
phenotypic variance, and r is a scalar for VNA, which
ranges from 1⁄4 to 0 (see next section).

Since CVMZ, CVDZ, and VP are estimated from obser-
vations, equations 1 to 3 can be used to estimate VA,
VNA, VC, and VE. From algebra, the number of indepen-
dently informative equations must be equal to or
greater than the number of unknown parameters for
the unknown parameters to be estimable. Parameter
indeterminacy arises in the CTD because five unknowns
(VA, VNA, VC, VE and r) are estimated by only three
informative equations [1 to 3]. Researchers must there-
fore fix two underlying parameters at assumed values
in order to estimate the remaining parameters. In the
CTD, these fixed parameters are r̂ (fixed to 1⁄4) and
either V̂C or V̂NA (one of which is fixed to zero).1

Typically, V̂NA is fixed to zero when the ratio
CV̂DZ /CV̂MZ ≥ 1⁄ 2 while V̂C is fixed to zero when
CV̂DZ/CV̂MZ ≤ 1⁄2. This rule of thumb is sensible, if one
must fix either V̂C or V̂NA to zero, because it ensures that
none of the estimated variance parameters will be nega-
tive (or at a zero boundary if constrained to be posi-
tive). V̂E can be estimated regardless of which parame-
ters are fixed because it is fully determined by two
observed values, V̂P and CV̂MZ.

Fixing two parameters in the CTD is a useful trick
for circumventing the parameter indeterminacy in
what, strictly, is an unsolvable set of equations. In the
real world, however, it is reasonable — and even likely
— to expect common environmental, nonadditive
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genetic, and additive genetic factors to all simultane-
ously affect the phenotype. Moreover, and contrary to
the mantra, it is perfectly valid mathematically to esti-
mate VC and VNA simultaneously so long as V̂A and r̂ are
fixed. For reasons explained below, the tradition of
setting r̂ to 1⁄4 and either V̂C or V̂NA to zero generally
leads to overestimates of V̂A at the expense of estimates
of both V̂NA and V̂C (Eaves et al., 1978; Grayson, 1989;
Jinks & Fulker, 1970; Martin et al., 1978).

Decomposition of Genetic Nonadditivity

Although DZ twins and other full siblings share on
average half of their alleles, the effects of these alleles
are not usually shared by half. This situation, due to
genetic nonadditivity, occurs when the phenotypic
effects of alleles depend upon other alleles. This is
called dominance when a given allele’s effect depends
upon its ‘sister’ allele at the same locus of the homolo-
gous chromosome and epistasis when its effect depends
upon one or more alleles at separate loci. The number
of other alleles modifying a given allele’s effect reduces
the covariation between DZ twins or other full siblings
on some phenotype (Mather, 1974). Specifically,

CVDZ = VC + 1⁄2V1 + 1⁄4V2 + 1⁄8V3 + 
1⁄16V4 + 1⁄32V5 + ... +(1⁄2)nVn [4]

where V1 = VA is the variation in the marginal effect of
alleles (depending only upon the effects of alleles taken
individually), V2 is the variation in effects that depend
upon combinations of two alleles (i.e., dominance or
additive-by-additive epistasis), V3 is the variation in
effects that depend upon combinations of three alleles
(e.g., additive-by-dominance epistasis among others),
and so forth for each of n alleles affecting the pheno-
type in question.2 Thus, from equation [3],

rVNA = 1⁄4V2 + 1⁄8V3 + 1⁄16V4 + 
1⁄32V5 + ... +(1⁄2)nVn [5]

Although the scalar r̂ is set to 1⁄4 in the CTD, it can be
seen that its true population value is equal to an
average of the scalars, 1⁄4, 1⁄8, 1⁄16, ..., (1⁄2)n, weighted
by the magnitude (relative to VNA) of each correspond-
ing variance component V2 to Vn:

r = 1⁄4V2 /VNA + 1⁄8V3 /VNA + 1⁄16V4 /VNA + 
1⁄32V5/VNA + ... +(1⁄2)nVn /VNA [6]

Thus, r = 1⁄4 only when VNA is solely due to dominance
and/or additive-by-additive epistasis (i.e., when
V3 = V4 = V5 = ... = Vn = 0), and otherwise ranges
from an upper bound of 1⁄4 to a lower bound that theo-
retically approaches zero.

If all the alleles and relevant loci were known, it
would be possible to estimate r precisely. In practice,
however, it is generally impossible to assess the value of
r from trait-level analyses in humans because there are
too many parameters (V2 , V3, … Vn) and their intercor-
relations would be too high for any data set to possibly

estimate (Eaves, 1988). Observing parent–offspring cor-
relations that are of similar magnitude to sibling–sibling
correlations would suggest that epistatic effects that are
purely additive in nature (e.g., additive-by-additive epis-
tasis) probably contribute more to VNA than does
dominance or epistasis with dominance components
(Heath et al., 1984; Mather, 1974). However, compar-
ing parent–offspring and sibling–sibling correlations
does not allow r to be estimated: similar parent–off-
spring and sibling–sibling correlations can result from
interactions from any number of additive loci, and thus
could result from many different values of r. 

Quantitative trait loci analyses in experimentally
bred animals suggest that epistasis is quite common
(Li et al., 1997; Long et al., 1995; Shook & Johnson,
1999; Yu et al., 1997), with a recent review estimating
that up to a third of the genetic variation in carefully
studied animal traits is due to epistasis (Carlborg &
Haley, 2004). Given that epistasis appears to be non-
trivial in those traits where it has been detectable, it
seems unlikely that r will be exactly 1/4 in most of the
complex and polygenic traits of interest to researchers
of human variation. Nevertheless, for reasons dis-
cussed below, it is probably not biologically plausible
for values of r to approach their theoretical lower
bound of zero.

Parameter Biases in the Classical Twin Design

It is relatively straightforward to quantify the degree
of bias that exists in parameter estimates when the
CTD conventions of fixing parameters are followed.
Turning first to the situation CV̂DZ/CV̂MZ ≥ 1/2, using
the fixed parameter values of the CTD (V̂NA = 0 and
r̂ = 1⁄4) and algebraic manipulation of equations [2] and
[3] leads to the familiar equations:

V̂A = 2(CV̂MZ – CV̂DZ) [7]

and 

V̂C = 2CV̂DZ – CV̂MZ [8]

Substituting the actual population values CVMZ and
CVDZ from equations [3] and [4] for their estimates
CV̂MZ and CV̂DZ in equations [7] and [8], we obtain the
true population variance compositions of V̂A and V̂C in
the CTD when CV̂DZ/CV̂MZ ≥ 1/2:

V̂A = VA + 2(1 – r)VNA [9]

V̂C = VC – (1 – 2r)VNA [10]

replicating the findings by Grayson (1989). Thus, V̂A

overestimates VA by 2(1–r)VNA while V̂C underestimates
by VC by (1–2r)VNA in the CTD. Intuitively, this occurs
because nonadditive genetic variation strongly reduces
the similarity of DZ twins relative to MZ twins, masking
the effects of the common environment and mimicking
(when combined with common environmental effects)
the effects of additive genes. The lower r is (the more
higher-order epistasis exists), the greater these biases
become. Obviously, since V̂NA

is set to zero, VNA is
underestimated by whatever its true value is.
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Turning to the situation CV̂DZ /CV̂MZ
≤ 1/2 and using

the assumed values V̂C = 0 and r̂ = 1⁄4 , we can once
again use equations [2] and [3] to find the estimates of
VA and VNA:

V̂A = 4CV̂DZ – CV̂MZ [11]

and 

V̂NA = 2CV̂MZ – 4CV̂DZ [12]

Substituting the population parameters into the right
sides of equations [11] and [12] leads to the population
variance compositions of V̂A and V̂NA in the CTD when
CV̂DZ/CV̂MZ ≤ 1/2:

V̂A = VA + 3VC – (1 – 4r)VNA [13]

V̂NA = 2(1 – 2r)VNA – 2VC [14]

These equations are different to those obtained by
Grayson (1989), who may have erred by fixing the
population parameter, r, to 1/4 while allowing assumed
values of r̂ to vary, which is the opposite of what is
required.3 Thus, contra Grayson (1989), who argued
that V̂A always overestimates VA, VA can be overesti-
mated or underestimated by V̂A in the CTD depending
on whether 3VC – (1 – 4r)VNA is positive or negative,
respectively. When r = 1/4, V̂A always overestimates VA,
but when r < 1/4, V̂A can underestimate VA in the pres-
ence of little VC. For example, it is not uncommon for
CV̂DZ/CV̂MZ < 1/4, which may appear as V̂A ~ 0 and very
high V̂NA using the CTD, but this more likely represents
higher-order epistasis (r < 1/4) and a concomitant
underestimation of VA. By the same token, VNA can be
overestimated when r < 1/4 and VC is small, or underes-
timated when r ~ 1/4 and VC is not negligible. It should
be noted that when r ~ 1/4, the effects of assortative
mating and/or the common environment mask VNA dis-
proportionately (by a factor of roughly 2VC), and thus
VNA may often be underestimated in CTD studies.

As noted by Grayson (1989), the normal method of
fixing parameters used in the CTD always minimizes
estimates of VC, which seems to lead to the conclusion
that CTD studies always report the lowest possible esti-
mates of the effects of the common (familial) environ-
ment. However, it must be remembered that the effects of
assortative mating are confounded with the effects of the
common environment in the CTD, meaning that there is
no clear prediction of the direction of bias in parameter
estimates of the common environment in CTD studies. 

Parameter Indeterminacy and Parameter Space 
in the Classical Twin Design

Exact parameter values can be estimated using the CTD
only because two unknown parameters are fixed at
canonical (and somewhat arbitrary) values. This prac-
tice leads to the consistent biases quantified above. We
now turn to examining the full range of parameter
values that are possible when the values normally fixed
in the CTD are allowed to vary.

Parameter indeterminacy occurs when different
combinations of parameters lead to the same observed
statistics, and therefore only a range of possible para-
meter values, and not their exact values, can be
estimated. Parameter indeterminacy in the CTD can be
visualized using a see-saw analogy (Figure 1). The mag-
nitudes of the three variance parameters are represented
by blocks of weight placed upon a see-saw. The VA

weight is placed above the fulcrum, the VC weight is
placed on one end of the see-saw, and assuming that
r = 1/4, the VNA weight is placed midway between the
other end of the see-saw and the fulcrum. Lower values
of r slide the VNA weight away from the fulcrum toward
the left end of the see-saw (Figure 1A). The degree to
which the see-saw tilts to one side or the other, corre-
sponding to different levels of CV̂DZ/CV̂MZ, provides
information about the magnitude of these blocks of
weight (Figure 1B). For the analogy to work, we must
imagine that (a) unlike normal see-saws, this see-saw
tilts only to the degree that one side is heavier than the
other; and (b) the blocks of weight cannot be seen, so
their sizes must be inferred based upon the tilt in the
see-saw. Figure 1C shows different combinations of
weights and weight placements that all lead to the same
tilt in the see-saw — in this case, a see-saw that is
evenly balanced. This simple and admittedly imperfect
analogy nevertheless gives an intuitive feel for the
reason behind parameter indeterminacy in the CTD:
many different hypothesized weight sizes and place-
ments can lead to the same observed see-saw tilt.

As illustrated in Figure 1, parameter bias exists in
the CTD because the unobservable parameter values
probably differ from their assumed values.
Systematically varying these assumed values and noting
the corresponding estimated parameters reveals the
parameter space of a given data set, each point within
the space corresponding to different combinations of
parameters which are, mathematically, equally valid in
explaining twin variances and covariances. Describing a
data set’s parameter space simply involves finding its
boundaries. Table 1 shows how fixing different combi-
nations of two parameters, r̂ and one of the other
variance parameters, leads to different methods of esti-
mating the other two parameters.4 These methods were
derived in the same fashion as were equations [7], [8],
[11] and [12], and each method will provide an equiva-
lent fit to any twin-data set. Given that zero is the
natural minimum for variance parameters, Table 1 also
shows the maximum and minimum for each variance
parameter, and consequently the boundaries of the full
parameter space. Note that rows 1 to 4 in Table 1
amount to varying r̂ from its minimum (zero) to its
maximum (1/4) and varying V̂NA

and from its minimum
(zero) to its maximum (which occurs when V̂A = 0).
Similarly, rows 5 to 8 in Table 1 amount to varying r̂
and V̂C from their minima to their maxima.
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Gauging Which Source of Parameter Indeterminacy 
is the Most Consequential

There are two sources of the parameter indeterminacy
in the CTD: (1) the indeterminacy caused by altering
assumed values of r̂, and (2) the indeterminacy caused
by altering assumed values of V̂C or V̂NA. It is of interest
to understand which of these two sources causes the
most indeterminacy in the estimated parameters, and
hence is the greatest potential source of parameter bias
in the CTD. ‘Potential’ bias refers to how much a para-
meter can vary; it is potential because the actual bias of

a parameter from some data set is, of course, unknow-
able. We define the potential bias of a given variance
parameter that is due to r being unknown as the range
of values that variance parameter can take when r is
allowed to vary from its minimum to its maximum. For
example, one could find the range of values (the poten-
tial bias) of V̂A that occurs when r̂ varies from zero to
1/4. Similarly, we define the potential bias of a variance
parameter that is due to the convention of fixing V̂C or
V̂NA to zero as the range of values that variance parame-
ter can take when V̂C (if CV̂DZ/CV̂MZ ≤ 1⁄2) or V̂NA (if
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CV̂DZ /CV̂MZ ≥ 1⁄2) are allowed to vary from their
minima to their maxima. If the ranges of variance
parameters are greatest across different fixed values of
r̂, then the convention of fixing r̂ = 1/4 would be the
greatest source of potential bias in the CTD, and vice
versa for different fixed values of V̂C or V̂NA. Which of
these is the greatest potential source of bias in CTD
estimates?

The absolute differences between the parameter
estimates of rows 1 and 2 in Table 1 give the ranges of
the three variance parameter values that are caused by
varying V̂NA from its minimum (zero) to its maximum
(which occurs when V̂A = 0) given that r̂ is zero and that
CV̂DZ/CV̂MZ ≥ 1⁄2. In this case, for example, the range in

V̂C values across all possible values of V̂NA is
CV̂MZ – CV̂DZ. This quantity is maximized when
CV̂DZ = 1/2CV̂MZ (given the constraint that
CV̂DZ/CV̂MZ ≥ 1⁄2), and thus CV̂MZ – 1/2CV̂MZ = 1/2CV̂MZ is
the maximal potential bias in V̂C when r̂ = 0 and
CV̂DZ /CV̂MZ ≥ 1⁄2. In a similar way, the maximum
potential parameter biases due to altering assumed
values of V̂C or V̂NA are isolated by finding the absolute
differences in parameter estimates between rows 
1 and 2, rows 3 and 4, rows 5 and 6, and rows
7 and 8 in Table 1. The maximum parameter biases
due to altering assumed values of r̂ are isolated by
finding the absolute differences in parameter esti-
mates between rows 1 and 3, rows 2 and 4, rows
5 and 7, and rows 6 and 8.

We calculated all the differences in parameter esti-
mates as indicated above to gain insight into which
source of bias is most influential. We found that the
effects of altering assumed values of V̂C or V̂NA are great-
est when CV̂DZ = 1/2CV̂MZ and nonexistent when
CV̂DZ /CV̂MZ = 1 or 0, while the effects of altering
assumed values of r̂ are greatest when CV̂DZ = 1/4CV̂MZ

and nonexistent when CV̂DZ/CV̂MZ = 1 or 0. To further
complicate matters, the effects of both sources of inde-
terminacy depend upon the levels of the other fixed
parameter. To simplify these relationships, Table 2
quantifies the maximal potential bias (i.e., the maximal
range of parameter values) for every variance parameter
separately for the two sources of bias. In most situa-
tions, the second source of bias, due to altering
assumed values of V̂C or V̂NA, has greater potential
impact on parameter estimates than does altering
assumed values of r̂. However, not shown in Table 2,
the potential bias due to altering assumed values of r̂
increases as the ratio CV̂DZ /CV̂MZ shrinks. When
CV̂DZ ≤ 1/4CV̂MZ, the two sources of bias are equally
influential (additional details available from the author
upon request).

Modeling Broad-Sense Heritability
Of the two sources of parameter indeterminacy in the
CTD, we have shown that the inability to simultane-
ously estimate both V̂C and V̂NA — or equivalently, the
inability to simultaneously estimate all three variance
parameters — should generally have the greatest poten-
tial to bias parameter estimates. An alternative
modeling approach might therefore be to collapse two
variance parameters into a single parameter. This can
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Table 1

Methods of Obtaining V̂A, V̂C, and V̂NA from CV̂MZ and CV̂DZ and the
Boundaries of the Parameter Space Given Eight Different Pairs of 
Fixed Parameters Possible in Twin-Only Designs

Fixed Parameters V̂A V̂NA V̂C

CV̂DZ /CV̂MZ > 1/2

1. r̂ = 0, V̂A = 0 0 CV̂MZ – CV̂DZ CV̂DZ

min inter max

2. r̂ = 0, V̂NA = 0 2(CV̂MZ – CV̂DZ) 0 2CV̂DZ – CV̂MZ

max min min

3. r̂ = .25, V̂A = 0 0 4/3(CV̂MZ – CV̂DZ) 4/3CV̂DZ – 1/3CV̂MZ

min max inter

4. r̂ = .25, V̂NA = 0 2(CV̂MZ – CV̂DZ) 0 2CV̂DZ – CV̂MZ

max min min

CV̂DZ /CV̂MZ < 1/2

5. r̂ = 0, V̂A = 0 0 CV̂MZ – CV̂DZ CV̂DZ

min inter max

6. r̂ = 0, V̂C = 0 2CV̂DZ CV̂MZ – 2CV̂DZ 0
max min min

7. r̂ = .25, V̂A = 0 0 4/3(CV̂MZ – CV̂DZ) 4/3CV̂DZ – 1/3CV̂MZ

min max inter

8. r̂ = .25, V̂C = 0 4CV̂DZ – CV̂MZ 2CV̂DZ – 4CV̂MZ 0
inter inter min

Note: max = maximum, min = minimum, and inter = intermediate parameter estimates
within each group (rows 1–4 and 5–8) of fixed parameters.

V̂C is not fixed to 0 when CV̂DZ /CV̂MZ > 1/2 (rows 1–4) because this implies that
V̂NA < 0 and similarly V̂NA is not fixed to 0 in rows 5–8 because this implies that
V̂C < 0.

Rows 4 and 8 represent the CTD.

Table 2

Comparison of the Maximal Biases of V̂A, V̂NA, and V̂C, that are due to the Two Sources of Parameter Indeterminacy in Twin-Only Designs

Indeterminacy due to varying r̂ Indeterminacy due to varying V̂NA or V̂C

Parameter Maximum bias Where maximum bias occurs Maximum bias Where maximum bias occurs

V̂A
1/2CV̂MZ CV̂DZ = 1/4CV̂MZ & V̂C = 0 CV̂MZ CV̂DZ = 1/2CV̂MZ & r̂ = 1/4

V̂NA
1/2CV̂MZ CV̂DZ = 1/4CV̂MZ & V̂C = 0 2/3CV̂MZ CV̂DZ = 1/2CV̂MZ & r̂ = 1/4

V̂C
1/4CV̂MZ CV̂DZ = 1/4CV̂MZ & V̂A = 0 1/2CV̂MZ CV̂DZ = 1/2CV̂MZ & r̂ = 0



be done by modeling broad-sense heritability explicitly,
estimating V̂G = V̂A + V̂NA rather than V̂A and V̂NA sepa-
rately. The expected covariances between MZ and DZ
twins would simply be:

CVMZ = VG + VC [15]

CVDZ = qVG + VC [16]

where

q = 1/2 VA/VG + r VNA/VG [17]

The value q represents an amalgam of both r and the rel-
ative degree of VA and VNA, and will range from almost
zero (when both VA and r ~ 0) to 1/2 (when VNA = 0).
Solving for the estimates of VG and VC , we have:

V̂G = 1___ (CV̂MZ – CV̂DZ) [18]
1 – q̂

V̂C = (1 – 1___) CV̂MZ + 1___ CV̂DZ
[19]

1 – q̂ 1 – q̂

As is evident from equations [18] and [19], in all cases,
V̂G is maximized when q̂ = 1/2 and minimized when
q̂ = 0, while V̂C is maximized when q̂ = 0 and mini-
mized when q̂ = 1/2.

To estimate V̂G and V̂C, q̂ must be fixed to some
value. Table 3 shows how fixing different values of q̂
alters the parameter estimates for four hypothetical
observations of CV̂DZ and CV̂MZ. Table 3 also shows that
as the value CV̂DZ /CV̂MZ approaches unity, the ranges of
possible parameter values shrink, becoming invariant
when CV̂DZ = CV̂MZ, in which case V̂G = V̂A = V̂NA = 0 and
all covariance between twins would be attributable to
V̂C. Unfortunately, the reverse logic also holds: as
CV̂DZ /CV̂MZ decreases, the range in parameter values that
could account for a given set of data becomes greater.

An advantage of modeling V̂G (broad-sense heritabil-
ity) rather than V̂A and V̂NA separately is that it is
simpler and loses no information compared to the tra-
ditional approach in that r̂, and the relative degree of V̂A

and V̂NA are indeterminate anyway. The parameter V̂G

will also have much tighter confidence intervals than
either V̂A or V̂NA, and thus can allow for more powerful
tests. Furthermore, it is easier to find and present the
ranges of possible parameter values that arise from dif-
ferent values of q̂, and interpretation of the quantity q̂
brings researchers face-to-face with the very real
problem of untangling genetic effects using the CTD.
Nevertheless, in an important sense, modeling only
broad-sense heritability merely pushes the issue of the
makeup of genetic architecture back one level, but sub-
stantively it resolves none of the problems of parameter
indeterminacy discussed above. The degree of indeter-
minacy in V̂A, V̂NA, and in V̂C, remains the same
regardless of whether V̂A and V̂NA are modeled sepa-
rately or combined into a single construct, V̂G.

Mathematical Validity Versus Biological Plausibility 
of Parameter Spaces

Table 1 shows the four boundaries of the parameter
space that will arise from any CTD study. Any set of
four parameters lying within this space will be mathe-
matically equally valid in explaining a given data set.
However, not every set of parameters within the space
are biologically equally plausible. Specifically, values
of r̂ and V̂A that are close to zero are less biologically
plausible than spaces where these values are more posi-
tive. Equivalently, values of q̂ that are close to zero are
less biologically plausible than values of q̂ that are
closer to 1/2. This is because dominance and higher-
order epistatic effects tend to contribute variation to
lower-order, simpler variance components while the
reverse is not true. Two interacting alleles, which one
might think should contribute variation only to V2, nev-
ertheless typically have marginal effects which also
contribute variation to V1 (i.e., to VA); alleles whose
effects are determined by three alleles have marginal
effects that contribute to both V1 and V2; and so forth.5

The exact degree of this ‘carryover’ to simpler variance
components depends upon the strength of the interac-
tion and allelic frequencies (see Eaves, 1988; Falconer
& Mackay, 1996; Mather, 1974). For example, consid-

Table 3

Effects of Altering Assumed Values of q̂ on Parameter Estimates Given Different Ratios of CV̂DZ /CV̂MZ

CV̂DZ = .60 CV̂DZ = .40 CV̂DZ = .20 CV̂DZ = .00
CV̂MZ = .60 CV̂MZ = .60 CV̂MZ = .60 CV̂MZ = .60

q̂ V̂G V̂C V̂G V̂C V̂G V̂C V̂G V̂C

.5 .00 .60 .40 .20 .80 –.20 1.20 –.60

.4 .00 .60 .33 .27 .67 –.07 1.00 –.40

.3 .00 .60 .29 .31 .57 .03 .86 –.26

.2 .00 .60 .25 .35 .50 .10 .75 –.15

.1 .00 .60 .22 .38 .44 .16 .67 –.07

.0 .00 .60 .20 .40 .40 .20 .60 .00

Range .00 .20 .40 .60

Note: Range is the absolute difference between the upper and lower bounds of both V̂G and V̂C .

Variance estimates were not constrained to be ≤ 1 or ≥ 0 for symmetry of presentation. Altering these constraints does not qualitatively change the conclusions.
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ering only single locus effects (ignoring epistasis), high
levels of VD (V2) are only observed when either
(a) numerous loci with infrequent and close to recessive
alleles affect the trait; or (b) loci with frequent and
over/underdominant alleles affect the trait. In most
other cases, even if the alleles show various levels of
dominance, the VG will be mostly additive in nature.

A similar type of carryover effect exists with epista-
sis, although quantifying it becomes cumbersome
(Mather, 1974) and thus simulation studies are a prefer-
able approach. A simulation conducted by Eaves
(1988) indicated that increasing the number of interact-
ing loci had less effect on DZ twins’ genetic covariances
(q) than might be expected. As the number of interact-
ing loci increased from two to five, q decreased by only
.01 to .14 units, depending on (a) allele frequencies; (b)
the strength and direction of dominance; and (c) the
strength and direction of epistasis. With five loci, for no
configuration of these factors was q < 1/8, and generally
.30 < q < .50 (Eaves, 1988).

Using Eaves’ findings as a rough guide, we might
expect 1/8 < q < 1/2 in most cases. Using standardized
parameters (i.e., VG = 1), from equation (17), this is
equivalent to stating that 1/8 < (1/2VA + rVNA) < 1/2,
which corresponds to 1/8 < r < 1/4 and VA > 0 in most
cases. However, more work is needed to better under-
stand what areas in the parameter space are more or
less likely. Eaves’ study surveyed two or five loci, but
it is becoming clear that certain complex traits will be
affected by many more loci than this. Similarly, his
study surveyed many ranges of degrees of dominance,
but some degrees of dominance appear to be more
common than others (deVicente & Tanksley, 1993).
Now that data regarding distributions of degrees of
dominance, degrees of epistasis, and minor allele fre-
quencies are increasingly available from QTL analyses
in animals, such information can be used in simulation
studies to gain a better understanding of what areas of
the parameter space are highly unlikely and can there-
fore be safely ignored, and which areas are
biologically more likely and should be given greater
a priori weight. We leave further development on this
topic for future research.

Presenting and Limiting Parameter
Indeterminacy in Twin Studies
Current Reporting Practices of Classical Twin Design Findings

To gain an understanding of how parameter indetermi-
nacy is typically reported, we reviewed 40 publications
randomly selected from a larger pool of 241 publica-
tions (identified using the Medline search engine) of
primary research that used the CTD or the twin plus
siblings design.6 Of the 40 publications, 38 used the
CTD and two used the twin plus siblings design. We
found that 33 (82%) of the reviewed publications made
no mention of the potential trade-off between V̂C and
V̂NA nor the ramifications of fixing r̂ = 1/4. The coverage
on indeterminacy in the remaining 18% (seven publica-
tions) was comprised of the following: two that did not

report directly on the indeterminacy but noted limita-
tions of estimating parameters with the CTD; three that
conveyed it was possible for both VC and VNA to
coexist, but that only one could be estimated using the
CTD; one that reported the potential for V̂A to overesti-
mate VA; and finally, one that provided a rather
comprehensive account of indeterminacy. In all cases,
parameter estimates were derived from the specific
assumption that r̂ = 1/4 and that either V̂C = 0 or
V̂NA = 0, and in no case was the degree of parameter
indeterminacy reported explicitly.7

We question whether the typical reporting prac-
tice from twin results — reporting only parameter
estimates that arise from one particular set of
assumptions — is optimal given that these assump-
tions are predicted to lead to biased estimates that
might thereby convey somewhat false impressions of
the causes of human variation. Among other
reasons, this is potentially troubling because findings
from twin studies are increasingly used by
researchers outside of mainstream behavioral genet-
ics as a way to understand the causes of variation in
traits of interest. Researchers conducting linkage
analysis, for instance, might use twin findings to
understand not only how ‘genetic’ a trait is, but also
to understand the degree of genetic nonadditivity
present, which could have ramifications on the type
of statistical model employed. Similarly, develop-
mental psychologists might interpret evidence for
common environmental effects without understand-
ing how its estimate depends upon two often hidden
model assumptions.

Presenting Parameter Indeterminacy

We forward that it is important to convey to con-
sumers of twin research the range of possible
parameter values that could account for a given twin
data set. For the CTD, parameter indeterminacy
arising in twin studies can be presented graphically by
running the analysis (using LISREL, Mx, etc.) four dif-
ferent times (corresponding to the rows 1 to 4 in Table
1 when CV̂DZ /CV̂MZ ≥ 1/ 2 and rows 5 to 8 when
CV̂DZ /CV̂MZ ≤ 1/2), with each run fixing r̂ and one of
the other parameters. The remaining two parameters
from each run are freely estimated and their values
recorded. As each run leads to a minimum or
maximum for at least one of the parameters, the four
sets of two fixed and two estimated parameters rep-
resent the boundaries of the parameter space which
can then be graphed. That any set of four parameters
within this area is equally likely (statistically) can be
checked by choosing a point within the area, fixing
the four parameters to the corresponding values, and
checking that the fit function is exactly the same as
the one obtained from the CTD.

Because indeterminacy exists in two dimensions —
not four — the parameter space can be fully presented
graphically in two dimensions, although some infor-
mation must be condensed.8 Figure 2 shows the
two-dimensional standardized parameter space from a
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twin plus sibling study (Keller et al., 2005) on extra-
version where CV̂DZ /CV̂MZ < 1/2, and Figure 3 shows
the standardized parameters space from data on per-
ceived social support using a CTD (Coventry et al.,
2005) where CV̂DZ /CV̂MZ > 1/2. The y-axes are V̂C, the
x-axes are the degree to which V̂A is greater than V̂NA ,
and r̂ is represented by shading. Parameter estimates
from the CTD are single points on the extreme bound-
aries of the spaces, showing graphically that the
assumptions of the CTD lead to estimates that are
biased in the predictable directions discussed above.
The parameter space in Figure 3 is triangular because
there is no difference between r̂ = 0 and r̂ = 1/4 when
V̂NA = 0.

In both figures, the lower limits for r̂ and V̂A were
set to zero, which is probably unrealistic, as described
above. Thus, it must be stressed that the parameter
space presented in these figures shows the full range of
mathematically equally valid parameters. Darker areas
of the figure (where 1/8 < r < 1/4) and areas where V̂A is
more positive (perhaps where V̂A > 1/2V̂NA) should be
considered more biologically likely. In future research,
we plan on more precisely identifying the areas that are
more likely, and introducing a presentation technique
that limits the parameter space to those regions that are
biologically plausible. 

The graphical approach employed here can be
extended to multivariate phenotypes by fixing parame-
ters in the same way as with univariate phenotypes.

Furthermore, if a parameter interacts with sex or some
environmental variable, the parameter space can be sep-
arately analyzed at different levels of the interacting
variable (e.g., different graphs for males and females if
there is evidence for a gene-by-sex interaction).

The ranges of V̂A and V̂NA in Figures 2 and 3 demon-
strate that the CTD is poorly suited to divining the
genetic architectures of traits. Nevertheless, it should
also be noted that the range of the sum V̂A + V̂NA (V̂G)
will always be much less than the range of the differ-
ence V̂A – V̂NA. While V̂A – V̂NA has a range of .62 (–.39
to .23) in Figure 2 and .47 (–.19 to .28) in Figure 3, V̂G

has a range of .18 (.29 to .47) in Figure 2 and .09 (.19
to .28) in Figure 3. This graphically demonstrates the
fact that broad-sense heritability estimates will always
be less variable than narrow-sense heritability estimates
from the CTD (Martin et al., 1978).

Limiting Parameter Indeterminacy

We forward three nonmutually exclusive strategies for
limiting the degree of parameter indeterminacy in twin
designs. The first is to extend, whenever possible, the
CTD to include parents, siblings, spouses and children
(Truett et al., 1994). Though more complicated and
computationally intensive, the ETFD has two princi-
pal advantages over the CTD. First, by adding more
genetically informative relatives, V̂C can be decom-
posed into four components: variance due to parental
influence (vertical transmission), variance specific to the
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twin environment, variance specific to the sibling envi-
ronment, and (genetic) variance due to assortative
mating. Second, the ETFD allows VC and VNA to be
estimated simultaneously, precluding the need to fix
one of these parameters to zero. Nevertheless, parame-
ter indeterminacy still persists in the ETFD, albeit at
lower levels, because the value of r remains ines-
timable. When r = 1/4, the variance components in
the ETFD are unbiased. However, to the degree that
r < 1/4, VNA will be overestimated and VC will be
underestimated. Because of this, it seems preferable to
explicitly report the parameter indeterminacy caused by
varying r̂ in ETFD studies.

A second possible way to limit parameter indeter-
minacy in twin designs is to report parameters from
the full rather than reduced statistical models. While it
is traditional to drop parameters (i.e., set them to
zero) that statistically cannot be shown to differ from
zero, such an approach probably maximizes the biases
of the estimated variance parameters. As demon-
strated above and shown graphically in Figures 2 and
3, setting parameters to their lower bound of zero
pushes the estimated parameters to extreme bound-
aries of the space of their possible values. In a
Bayesian sense, this should maximize on average the
distance from the estimated parameters to the true
parameter values. Nevertheless, reduced models may
sometimes be preferable simply because they are more
powerful and make more easily falsified predictions. It
seems preferable therefore to report parameters from

both the full and reduced statistical models, leaving
interpretation to the reader (M. C. Neale, personal
communication, February, 2005).

A third possible way to narrow the parameter
indeterminacy in twin designs is to use prior research
or theory to fix V̂C (or other parameters) at more likely
values. For example, if adoption data exists for a phe-
notype of interest that allows for reliable estimates of
VC, V̂C can be fixed at that value in future classical twin
studies of the same phenotype. Stoolmiller (1999) and
others have argued that adoption data may often
underestimate VC because the range of family environ-
ments are restricted due to screening by adoption
agencies. However, VC might also be overestimated
due to selective placement, and in either case, statisti-
cal methods can be used to control for these sources of
bias (Neale, 1998). While we agree with those that
would caution that this strategy should be used only
when there is good reason to believe that the fixed
values are fairly accurate and relevant to the study in
question, it must also be acknowledged that the tradi-
tional method of fixing parameters (e.g., fixing V̂C = 0
simply because CV̂DZ /CV̂MZ ≤ 1/2) is not only more arbi-
trary than the proposed method, it also leads to
extreme parameter estimates.

Conclusion
How substantial are the biases in parameter estimates
from CTDs? The maximal potential bias can be quite
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large, depending upon the ratio CV̂DZ /CV̂MZ and the
absolute level of CV̂MZ (Table 2). In a companion
report (Coventry & Keller, 2005), we compared all
ETFD parameter estimates available in the literature
to those that would be obtained from the CTD as a
way to gain some idea of the actual bias in CTD esti-
mates that is due to the inability to simultaneously
estimate V̂C and V̂NA, as well as several other parame-
ters. As predicted, we found that V̂A and V̂NA

parameters from the CTD could be very misleading,
although broad-sense heritability (V̂A + V̂NA) appeared to
be much less biased. Furthermore, for certain pheno-
types, what would appear to be V̂C in the CTD turned
out to be due to assortative mating in the ETFD,
demonstrating that CTD studies do not always under-
estimate the effects of the common environment. For
other phenotypes, the effects of the common environ-
ment were masked in CTD studies. These results
demonstrate the problems described in this paper with
interpreting CTD parameter estimates, but they also
suggest that CTD estimates are useful if interpreted in
light of their limitations.

The degree to which epistasis contributes variation
to traits and the consequent bias it introduces (due to
the indeterminacy in r) poses a more difficult problem
for the interpretation of parameter estimates from twin
designs. Epistasis disproportionately masks the effects
of the common environment and assortative mating,
and drives DZ similarity to much lower levels than MZ
similarity, which expands the amount of indeterminacy
in estimated parameters. While its potential to bias
parameter estimates tends to be lower than the trade-
off between V̂C versus V̂NA, the true bias it causes cannot
be gauged by comparing CTD and ETFD estimates
because  is inestimable in the ETFD. It has become clear
from both genetic mapping and animal studies that
epistasis cannot be ignored as an important factor in
the genetic architecture of traits (Carlborg & Haley,
2004), and the common observations of
CV̂DZ /CV̂MZ < 1/2 and even CV̂DZ /CV̂MZ < 1/4 are con-
sistent with this possibility (Lykken et al., 1992). 

We have identified several ways that parameter inde-
terminacy from twin data can be minimized and/or
communicated. Most centrally, we argue that reporting
the full space of possible parameters, as in Figures 1 and
2, is easily accomplished, simple to understand, and aids
in the proper interpretation of both CTD and ETFD
results. This approach is preferable, we argue, to the
current practice of reporting a single set of parameters
based on only one particular set of assumptions. A clear
description of parameter indeterminacy is not only
important for accuracy and scientific integrity, but also
because it keeps behavioral geneticists themselves
mindful of assumptions that can easily go unquestioned.

This paper is not a critique of the CTD nor of twin
designs more generally, which have proven over the
years to be extraordinarily useful. Indeed, the CTD rep-
resents a large improvement over epidemiological
studies that include, for instance, parents and offspring

only. Moreover, the issue of parameter indeterminacy is
not a problem unique to twin studies; any model in
science is open to alternative explanations, and it is a
strength of the twin design that these alternatives can be
quantified (compare this to many models in the social
sciences). However, as Eaves et al. (1978) noted (refer-
ring specifically to the CTD), ‘If the twin study is to have
a future in human quantitative genetics, it will no longer
be as the mainstay of an investigation of the “heritabil-
ity” of a heterogeneous collection of behavioral
measures … twins are not an end in themselves since the
twin study cannot constitute a definitive basis for genetic
analysis’ (p. 277). Twenty-five years after this was
written, countless studies have employed the CTD.
While the researchers conducting these studies have not
asserted that their investigations represent the definitive
solution, they quite often do not acknowledge the poten-
tial biases caused by the model’s assumptions, nor the
ranges of possible parameter values that could account
for their data. Presumably this is assumed knowledge,
but such an assumption, like the assumptions in the twin
method itself, should be critically examined.

Endnotes
1 We follow the convention that V̂O and r̂ are the esti-

mates (via observation of a sample or deduction) of the
unknown population parameters VO and r.

2 See Mather (1974) for definitions of the various types of
epistasis and for alternative methods of variance decom-
position due to genetic nonadditivity. The simplified
technique presented here applies only to siblings; covari-
ation between parents and offspring depend not only
upon the number of modifying alleles, but also upon
whether the alleles are at the same or different loci.

3 Grayson (1989) concluded that V̂A always overesti-
mates VA by a factor of (2(1–r)/1–2r)VC and VNA always
underestimates V̂NA by a factor of (1/1–2r)VC. The dif-
ferences between Grayson’s conclusions and our own
appear to be due to incorrect substitution, not simply
to alternative assumptions or perspectives. A fuller
explanation of this discrepancy and worked-through
examples are available from the authors upon request.

4 Each parameter has a natural lower bound (zero), but
because r also has an upper bound (1/4), it makes
sense to always fix r̂ at its upper and lower limits
when exploring the boundaries of the other parame-
ters. Note that if CV̂DZ /CV̂MZ = m̂ < 1/4, the upper
bound of r̂ should be m̂ rather than 1/4 to insure that
no variance parameters are negative. Observing that
CV̂DZ /CV̂MZ < 1/4 would also imply that at least some
higher-order epistasis affects the trait and that
V3 ... Vn ≠ 0.

5 This occurs for the same reason that some marginal effect
generally exists anytime two or more variables interact.

6 Designs that include only twins plus siblings are also
sometimes referred to as extended twin designs.
Although twin plus sibling designs have substantially
more power to detect genetic nonadditivity and common
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environmental effects (Posthuma & Boomsma, 2000),
they suffer from the same parameter indeterminacy
issues as does the CTD.

7 Note that parameter indeterminacy is a separate issue
from variation in parameter estimates arising from
sampling error (i.e., reporting confidence intervals for
variance parameters). The latter were commonly
reported while the former were not.

8 MATLAB scripts that graph the parameters space for
any CTD findings (such as Figures 2 and 3) are avail-
able for download at www.matthewckeller.com. The
scripts require parameter boundaries as input and
output a plot.
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