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Genome-wide association studies (GWASs) of major depressive
disorder (MDD) have yet to identify variants that surpass the How to Cite this Article:
Power RA, Keller MC, Ripke S, Abdellaoui

A, Wray NR, Sullivan PF, Breen G. 2014. A

recessive genetic model and runs of

homozygosity in major depressive disorder.

Am J Med Genet Part B 165B:157–166.
threshold for genome-wide significance. A recent study reported

that runs of homozygosity (ROH) are associated with schizo-

phrenia, reflecting a novel genetic risk factor resulting from

increased parental relatedness and recessive genetic effects.

Here, we explore the possibility of such a recessive model in

MDD. In a sample of 9,238 cases and 9,521 controls reported in a

recent mega-analysis of 9 GWASwe perform an analysis of ROH

andcommonvariantsunder a recessivemodel. Since evidence for

association with ROH could reflect a recessive mode of action at

loci, we also conducted a genome-wide association analyses

under a recessive model. The genome-wide association analysis

using a recessive model found no significant associations. Our

analysis of ROH suggested that there was significant heteroge-

neity of effect across studies in effect (P¼ 0.001), and it was

associated with genotyping platform and country of origin. The

results of the ROH analysis show that differences across studies

can lead to conflicting systematic genome-wide differences be-

tween cases and controls that are unaccounted for by traditional

covariates. They highlight the sensitivity of the ROH method to

spurious associations, and the need to carefully control for

potential confounds in such analyses. We found no strong

evidence for a recessive model underlying MDD.

� 2014 Wiley Periodicals, Inc.

Key words: runs of homozygosity; recessive risk model; major

depression; inbreeding
INTRODUCTION
Major depressive disorder (MDD) is one of the leading burdens of

disease in the world, with a lifetime prevalence of �15% [Kessler

et al., 2003; Hasin et al., 2005]. It has been found to be moderately

heritable, from 31% to 42% [Sullivan et al., 2000], though with

greater heritability in severe, recurrent forms of the disorder

[McGuffin et al., 1996; Levinson, 2006]. A recent mega-analysis

of nine genome-wide association studies found no significant

associationswith individual genetic variants (PsychiatricGenomics

Consortium MDD Working Group, 2012), compared to �5

genome-wide significant associations in similar sized studies of

other psychiatric disorders [Ripke et al., 2011; Sklar et al., 2011].

These association studies are conducted under an additive model,

while the true effects of some risk variants may be recessive, for

which individuals with two copies of an allele are at greater risk than

would be predicted from twice a single allele’s effect. In a fully

recessive model only those with two copies of the risk allele are at

risk, though there is also thepossibility of partial recessive effects. As

selection acts to remove deleterious alleles with respect to overall

fitness from the population, genetic risk variants that are recessive

can escape selection longer. Inbreeding within families (e.g. con-

sanguineous marriages) often exposes such recessive alleles due to

an increased likelihood of alleles at each locus being identical by

descent. Until recently studies of inbreeding were focused on

families or communities in which inbreeding is expressed relative

to the founder generation, which is assumed to be unrelated and

where inbreeding informationwas determined from self-reports or
knowledge of pedigrees (pedigree inbreeding). For example, Rudan

et al. [2003] found a higher incidence of six complex genetic

diseases/disorders including MDD among Croatian villages with

higher levels of pedigree inbreeding [Rudan et al., 2003]. By using

genome-wide genotype data it is also possible to estimate an

individual’s inbreeding from more distant common ancestors to

provide evidence for whether a recessive genetic model is more

appropriate for a disorder.

One method to analyse the effect of inbreeding from genome-

wide genotype data is to identify segments of continuous homozy-

gous SNPs, reflecting blocks of the genome that are identical by

descent from a common ancestor. Runs of homozygosity (ROH)

capture inbreeding effects that are due to common or rare causal

variants better than a simple measure of excess number of homo-

zygous SNPs across the genome, which tends to only capture

the recessive effects of common variants [Keller et al., 2011]. An

association between percentage of genome covered byROH(FROH)

and schizophrenia has been reported [Keller et al., 2012].Due to the

possibility of genetic overlap between MDD and schizophrenia

[Schulze et al., 2012; Cross-Disorder Group of the Psychiatric

Genomics Consortium, 2013], a similar association between

FROH and MDD might be expected. However, MDD has a lower

heritability (h2� 0.37, Sullivan et al., 2000) than schizophrenia

(h2� 0.81, Sullivan et al., 2003), which should attenuate genetic

relationships. Moreover, some authors have suggested that MDD

may not be under negative selection and the casual genetic variants

may be beneficial in some circumstances [Nesse, 1999;Watson and

Andrews, 2002;Belsky andPluess, 2009; Power et al., 2013].Herewe

look at the association between MDD and SNPs in 9,238 cases and

9,521 controls across nine studies (Table 1) [Psychiatric Genomics

ConsortiumMDDWorkingGroup, 2012] under a recessive genetic

model. We also use genome-wide estimates of inbreeding to look

for a consistent difference between cases and controls across nine

studiesofMDD, inorder tosupporta recessivemodelof thedisorder.
MATERIAL AND METHODS

Sample
In this report, we analyzed individual data from the nine discovery

samples [Ising et al., 2009; Sullivan et al., 2009; Lewis et al., 2010;

Muglia et al., 2010; Rietschel et al., 2010; Shi et al., 2011; Shyn

et al., 2011; Wray et al., 2012] of the PGC-MDD that together

comprise 9,238 cases and 9,521 controls. Full sample details are

given in the supplementary materials of the original analysis

(Psychiatric Genomics Consortium MDD Working Group,

2012), and are outlined in Table 1. All subjects were of European
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ancestry (as determined from genome-wide genotypes). Cases were

required to have diagnoses of DSM-IV lifetime MDD established

using structured diagnostic instruments from direct interviews by

trained interviewers (two studies required recurrentMDD and one

recurrent, early-onset MDD) or clinician-administered DSM-IV

checklists. Studies ascertained cases mostly from clinical sources,

and controls were largely randomly selected from the population

and screened for lifetime history of MDD.
Method of ROH Calling and Analysis
Genotyping was described in the supplementary materials in

the original analysis (Psychiatric Genomics Consortium MDD

Working Group, 2012). All samples were genotyped with single

nucleotide polymorphism (SNP) arrays of greater than 200K

genome-wide SNPs, with analysis restricted to polymorphic

SNP probes. In the original analysis, imputation to the CEU

HapMap3 reference sample [Altshuler et al., 2010], 1,235,109

autosomal SNPs, was performed using Beagle 3.0.4 [Browning

and Browning, 2009]. In order to perform an association analysis

under a recessive model or call runs of homozygosity (ROH),

imputed SNP dosage data was converted to discrete genotype calls,

keeping those SNPs with a probability of at least 0.95. The use of

imputed SNPs helped to increase similarity of genomic coverage

across studies. SNPs with a missingness of >2% or minor allele

frequency (MAF) <5% were removed, as were then individuals

with missingness over 2%. Prior to analysis SNPs were pruned for

LD within PLINK, removing any SNPs with an R2 0.90 with any

other SNP in a50SNPwindow.Theuseof imputeddata inROHhas

previously been shown to give similar results to those restricting to

only genotyped SNPs [Keller et al., 2012]. The calling of ROH and

percentage of genome covered by ROH per individual (FROH) were

derived within PLINK [Purcell et al., 2007] following the same

method found to optimally detect effects of autozygosity, as de-

scribed in Howrigan et al. [2011]. In particular, we used a series of

sliding windows across the genome to call ROH within each

individual separately. The size of the windows was set to 65

consecutive SNPs, so any single SNPwould be found in 65 different

windows. If at least four (>5%)of thesewindows contained entirely

homozygous SNPs, then the SNP in question could be included

within a ROH.Within windows, one missing SNP was allowed. To

avoid false positives, only ROHwith a minimum of 65 consecutive

SNPs covering 2.3Mb were used when calculating FROH. In addi-

tion, the requiredminimum density in a ROHwas set at 200 kb per

SNP and the maximum gap between two consecutive homozygous

SNPs was set at 500 kb. The estimate of the total genome captured

was 2.77� 109 bp. The analysis was performed by study, using

FROH as a predictor of case-control status in a logistic regression.

Percentage of SNPs missing, a SNP-by-SNP measure of homozy-

gosity determined by PLINK’s—het command, and the first five

ancestry-informative principal components were used as covari-

ates. The SNP-by-SNP measure of homozygosity was included

to correct for differences in genomic-homozygosity levels unrelated

to inbreeding, such asDNAquality or population ancestry. Amixed

model was also examined combining all samples, using study as a

random effect. This analysis was performed in STATA [StataCorp.,

2011].



FIG. 1. Beta coefficient from logistic regression of FROH predict-

ing MDD per study (with 95% CI, accounting for covariates).

Positive effects suggest that ROHs are a risk factor for MDD.

Note that though no combined effect in the mixed model of the

full sample, in Illumina studies increased F was a risk factor
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Genome-Wide Recessive Model
The genome-wide recessive model analysis used the autosomal

dosage data converted to genotype calls as described above in the

analysis of ROH. Analyses was performed in PLINK [Purcell

et al., 2007], using the–recessive command. The first five ances-

try-informative principal components were included as covariates.

Analysis was restricted to autosomes. Each study was analysed

separately and then a meta-analysis was performed for each SNP

across studies (usingfixedeffectP-value inPLINK).As the risk allele

is set as the minor allele by default, and this may differ by study for

alleles at frequenciesnear 0.5,weused theminor allele in the analysis

of imputed data from the whole sample as a reference. A P-value

<5� 10�8 was considered as genome-wide significant. For this

significance cut-off, we had 90% power to detect a relative risk of

1.47 for the rare recessive genotype for SNPswith aMAF from0.3 to

0.5. However, power decreased rapidly for those alleles with lower

MAF,with 90%power to detect thosewith a relative risk of 1.81 and

MAFof 0.2, orwith a relative risk of 2.21 andMAFof 0.15. For those

SNPswith lowerMAF, power reduced rapidly for a recessivemodel.

Calculations were performed using CaTS Power Calculator [Skol

et al., 2006].

ROH

(P¼ 0.02) and in non-Illumina studies it was protective

(P¼ 0.007). Note also the consistency in studies from the

same country: �Australian studies; �American studies; #German

studies.

RESULTS

Across all samples the average percentage of the genome covered by

ROH (FROH) was 0.11% (95% CI 0.102–0.112; Table 1), similar

albeit slightly lower than average FROH (0.15%) reported in an

earlier report using the same parameters [Keller et al., 2012]. In our

mixed model analysis across all samples with study as a random

effect, we found no significant effect of FROH on MDD status.

However, there was substantial heterogeneity in direction of effect

across studies (P¼ 0.001, Fig. 1). Overall, four studies showed

increased FROH in cases (one significantly, P¼ 0.007), while five

studies showed increased FROH in controls (one where P¼ 0.005).

Including further principal components (up to 20) and increasing

ROH size (up to 170 SNPs)made no difference to the heterogeneity

of the results.

Toexplore this apparentheterogeneityweexamined two features

of the included studies that might provide insight into the results.

The first issue was potential poor matching of cases and controls,

which we tested within the combined RADIANT German and

Bonn-Mannheim sample. Here cases were recruited from both

of these two studies, whereas the controls were collected and

genotyped only as part of the Bonn–Mannheim study. However,

excluding the RADIANT cases and restricting to only the matched

Bonn–Mannheim study’s cases and controls still resulted in a

significant association with ROH (P¼ 0.03), as both sets of cases

were found to have similar mean FROH. This tentatively suggested

that the heterogeneity apparent across studies was not replicated

within studies recruited from the same geographic region.

Secondly, we were interested in the effects of genomic coverage

on ROH. Cases and controls from the Queensland Institute of

Medical Research (QIMR) were recruited as one sample but

included as two independent cohorts, based on their genotyping

platform (Illumina 317k and 610k chips). When we restricted the

analysis to only those SNPs directly genotyped on both platforms
(202,062 SNPs), we found that the mean FROH for the QIMR-610k

sample reduced from 0.086% to 0.077%, compared to 0.078% for

the QIMR-317k sample. This implies, as expected, that genotyping

platform and genome coverage were influencing estimates of mean

FROH.

To better understand potential sources of heterogeneity in our

findings, we used a linear meta-regression with a study’s effect size

as the outcome and features of the studies individually analysed as

predictors. We tested percentage of cases with recurrent MDD,

mean FROH and genome-wide homozygosity, country of recruit-

ment, presence of copy number variant probes on the platform, and

genotyping platform as potential predictors of direction of effect

(see Supplementary Table 1). Genotyping platform was nominally

associated with effect size (P¼ 0.05), and the direction of effect of

FROH differed when studies on non-Illumina platforms were ana-

lysed separately. Within the three non-Illumina genotyped studies,

increased inbreedingwasprotective againstMDD(P¼ 0.007)while

within the six Illumina genotyped studies inbreeding was a signifi-

cant risk factor forMDD(P¼ 0.02).Wenoted thatwhenmore than

one study was recruited from a country, the direction of effect for

ROH was consistent across all studies recruited from the same

country (see Fig. 1). However, this was only a significant predictor

in the meta-regression when distinguishing between German and

non-German studies (P¼ 0.02). This level of confounding from

genotyping and country likely reduced our power to detect a true

effect of ROH and MDD.
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In the meta-analysis of a recessive model of association, 929,

138 SNPs were analysed, though not all appeared in all nine studies

due to differences in genotyping coverage. The most significant

recessive association was for rs13261582 on chromosome 8 in an

intergenic region between SNTB1 and HAS2 (odds ratio of 2.0 for

the minor A allele, MAF 0.22, P¼ 2.58� 10�6). However this SNP

was only present in two studies (GenRED and STAR�D), and so is

only supported by a subset of the sample. It did not appear among

the reported top SNPs from the primary analysis of this dataset

under an additive genetic model in the full sample (P¼ 0.12). The

results of the meta-analysis also showed a lower median P-value

than expected by chance (lGC 0.97, see Supplementary Figs. 1 and 2

for Manhattan and QQ plots). The lGC was 1.03 for SNPs with

MAF> 0.2 and 0.90 for SNPs with MAF< 0.2, implying smaller

differences of genotype frequencies between cases and controls than

expected by chance for SNPS with low MAF. This is possibly the

result of the less accurate imputation of rare alleles, or a lack of

power.
DISCUSSION

Ouranalyses showsystematicdifferences inFROHbetween cases and

controls that differ in direction across studies. There are several

explanations for these results, mostly highlighting limitations of

this analysis. Firstly, we found systematic differences in mean FROH

between studies. This is not unexpected and likely reflects the

density of the genomic coverage and the accuracy of imputation,

since SNPs were restricted to those with high quality imputation.

A similar level of variation in FROH was observed in the Psychiatric

GWAS Consortium’s analysis of FROH across 17 studies of schizo-

phrenia [Keller et al., 2012], though they did not report any

heterogeneity of effect as a function of genotyping platform or

country of recruitment. It seems unlikely that the heterogeneity of

effect in the present study could be the result of differing SNP

inclusion on the platforms, because such an explanation would

imply systematic differences between cases and controls in the

probability of homozygosity across SNPs as a function of platform.

More likely in our opinion is the possibility that factors related

to ascertainment of cases and controls differed across studies

and influenced overall homozygosity. Such factors could include

changes in homozygosity levels due to length and quality of DNA

storage, or differences in ascertainment of cases and controls across

populations. It is noteworthy that the two out of nine studies that

genotyped controls independently of cases (GenREDand STAR�D)
both showed higher FROH in controls than cases. Further, studies

appear to cluster by country of origin and direction of the effect

of FROH. All three German studies had increased FROH in cases

for example, while the two Australian and two US studies all

showed increased FROH in controls. This may reflect confounding

demographic factors specific to each country. These unknown

confounders, such as urban/rural status or religion, that influence

both distant inbreeding (FROH) and MDD could explain the

differences in effects between studies. A recent analysis of ROH

and MDD in a partially overlapping sample of the GAIN study

analysed here found exactly that. Religion confounded of the

association due to reduced levels of depression but increased

inbreeding in within the religious population of the Netherlands
[Abdellaoui et al., 2013]. Certainly the initial hypothesis of this

study, that an association with inbreeding would reflect negative

selection on MDD and an excess of recessive causal mutations,

seems an implausible explanation for the observed heterogeneity as

the evolutionary cost ofMDD status seems unlikely to have differed

greatly among the ancestors of those included in the present

study. Any of these explanations for the results of the FROH analysis

may give some insight into why the original mega-analysis of these

nine studies did not lead to any replicable genome-wide significant

findings.

Our results from the genome-wide association analysis of MDD

also produced no evidence for a recessive model, failing to produce

any genome-wide significant associations. It is possible that our

underlying model of recessive effect is unsuitable for an outbred

population.Herewe looked at a recessive effect for theminor allele,

but two alternate models may also have been viable: compound

heterozygosity and overdominance. Compound heterozygosity is

an additional risk in individuals carrying two recessive but non-

identical alleles within a genetic locus, while overdominance is the

increased risk of homozygosity of any allele compared to being

heterozygous. However, our analysis of both would have been

restricted by low power and the use of biallelic markers, and

were, therefore, not performed. Both the GWAS and ROH analyses

suggest though that there is nounderlying recessivemodel ofMDD,

at least not of large effect. Such an association was previously

reported for schizophrenia in a similarly sized sample [Keller

et al., 2012], showing an increase of risk for schizophrenia by

17% for every additional percentage of the genome covered by

ROH and was taken as evidence for historical selection against

schizophrenia risk variants. The lack of a similar association here

adds molecular evidence to that from epidemiological studies

suggestingMDDhas little impact on reproductive fitness compared

to other psychiatric disorders, and so is under substantially less

negative selection [e.g., Power et al., 2013].

These results highlight that the analysis of FROH appears to be

sensitive to systematic differences between studies that are

ostensibly unrelated to MDD status, potentially give rise to either

false positive or false negative results. This suggests there are

genome-wide differences in homozygosity and/or inbreeding be-

tween populations that are not corrected for by methods such as

ancestry-informative principal components. We recommend the

use of large combined samples in the analysis of FROH as a predictor

of traits and disorders, due to the high risk of spurious associations

within one study. Preferably such analyses should be done with

access to data on potential social and demographic confounders.

One possible further improvement might be the development of

novel methods for analysing ROH, particularly in imputed geno-

type data where probability for homozygosity across a region is

available. As similar heterogeneity across studies was not seen in

other analyses ofROHwithin consortia [Keller et al., 2012;McQuil-

lan et al., 2012], the significant heterogeneity in our results suggest

that MDD is particularly sensitive to differing demographics in the

ascertainment of cases and controls and thismay present a problem

to genome-wide polygenic approaches such as ROH. Certainly no

strong evidence for a recessive model was apparent, supporting the

view of MDD being under weaker negative selection than other

psychiatric disorders.
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