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Abstract

Whole genome pathway analysis is a powerful tool for the exploration of the combined effects of gene-sets within
biological pathways. This study applied Interval Based Enrichment Analysis (INRICH) to perform whole-genome pathway
analysis of body-mass index (BMI). We used a discovery set composed of summary statistics from a meta-analysis of 123,865
subjects performed by the GIANT Consortium, and an independent sample of 8,632 subjects to assess replication of
significant pathways. We examined SNPs within nominally significant pathways using linear mixed models to estimate their
contribution to overall BMI heritability. Six pathways replicated as having significant enrichment for association after
correcting for multiple testing, including the previously unknown relationships between BMI and the Reactome regulation
of ornithine decarboxylase pathway, the KEGG lysosome pathway, and the Reactome stabilization of P53 pathway. Two
non-overlapping sets of genes emerged from the six significant pathways. The clustering of shared genes based on
previously identified protein-protein interactions listed in PubMed and OMIM supported the relatively independent
biological effects of these two gene-sets. We estimate that the SNPs located in examined pathways explain ,20% of the
heritability for BMI that is tagged by common SNPs (3.35% of the 16.93% total).
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Introduction

Obesity greatly increases risk for many forms of pathology,

including vascular disease, multiple forms of cancer, heart disease,

and other serious health problems [1,2]. A greater understanding

of the biology underlying obesity could therefore have widespread

effects on public health. This has led to large-scale efforts to

understand the genetic architecture of obesity through the

application of genome-wide association studies and complemen-

tary methods, such as pathway analysis [3–7].

In 2010, the GIANT Consortium (Genetic Investigation of

ANthropometric Traits) performed the largest GWAS of BMI to

date, a two-stage analysis on 249,796 individuals of European

ancestry [8]. During the first stage, GIANT conducted a meta-

analysis using data from 46 studies including 123,865 subjects and

identified 42 independent loci associated with BMI at P,561026.

During stage two, 125,931 subjects from 34 additional studies were

used examine the 42 loci with suggestive significance in the first

stage. In a joint analysis of the first and second stage 32 SNPs were

significantly associated with BMI at p,561028, increasing the

number of loci robustly associated with BMI from 10 to 32 [3–8].

The GIANT study examined biological pathways that contain one

or more genes located within 300 kb of the 32 confirmed BMI

SNPs in an attempt to discover potentially new pathways

associated with BMI, and to test whether the 32 confirmed

association’s clustered near genes with biological relevance

(Table 1) [8].

Exclusively analyzing pathways that contain significant individ-

ual SNP associations in a discovery set is an informed way to

reduce the number of pathways being examined and decrease the

rate of type II errors from among those pathways implicated by

SNPs detected in the discovery set [9–12]. However, a major

drawback of the candidate pathway approach is that it can result

in an overly restricted exploration of the genome and lead to an

inflation of type-II errors genome-wide. Significant pathways and

their relevant biological functions can remain undetected because

pathways with an over-representation of associated SNPs that

individually fail to meet stringent genome-wide significance levels

are excluded from analysis. For highly polygenic traits like BMI

that appear to be influenced by numerous loci in several different

regions, this can be especially problematic [13–15].

Alternatively, formal whole-genome pathway analysis has a

much less restricted scope, examining pathways composed of SNPs

within genes from across the entire genome [16–18]. The results
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from studies of traits such as schizophrenia, diabetes, Chrohn’s

disease, arthritis, and several others demonstrate that the whole

genome approach can detect significantly enriched pathways that

do not contain individually significant SNPs [19–23].

The current study employed Interval Based Enrichment

Analysis (INRICH) to perform whole-genome pathway analysis

of body-mass index (BMI) [24]. We decided to apply INRICH, a

relatively new method of pathway analysis, because (a) previous

research shows reduced Type I and Type II error rates for this

algorithm compared to other methods that use the gene-set

enrichment approach [9–11,25,26]; (b) it has previously been used

to successfully identify pathways across multiple phenotypes [9–

11,25,26]; and (c) it uses summary data from SNP associations and

does not require the original genotype data, which was necessary

for conducting the pathway analysis on the GIANT data. We

downloaded gene set annotation for 880 canonical pathways from

the Molecular Signatures Data-base (MSigDB version 3.7) [27].

Most pathway databases are organized in a hierarchical structure,

resulting in a high degree of overlap between gene-sets. The

MSigDB database was designed to attenuate the problem of gene

overlap between pathways by removing gene-sets that have the

same member genes with their parent nodes and sibling nodes,

maximizing the independence of gene-sets while still maintaining

much of the information about the functional interrelationships

between pathways [27,28]. Our analysis used all publically

available summary statistics from the GIANT Consortium’s stage

1 meta-analysis of 123,865 individuals of European Ancestry (EA)

as a discovery set to identify nominally significant pathways. We

then validated the significance of detected enrichment using three

publicly available datasets that contained a total of 8,632 EA

subjects.

We also examined gene overlap between significant pathways to

gain a better understanding of the biological networks that

influence BMI. Genes and their products often act in multiple

pathways, meaning some degree of overlap is expected [29]. The

INRICH method corrects for potential bias introduced by non-

independence between pathways and also prevents a small

number of genes from driving pathways to significance [24].

Because of these corrections, our study treated genes shared by

multiple significant pathways as potential sources of insight into

important biological components relevant to BMI [25,29–31].

Regions of the genome within significant pathways may have a

greater than expected influence on the heritability of a trait

because pathways contain sets of genes with shared biological

functions [33–35]. Previous studies demonstrate that ,16–17% of

BMI heritability is explained when all common SNPs from across

the genome are examined as a set, and a significantly dispropor-

tionate amount of that variation (,9.9% of the heritability) exists

in genic regions [8,36]. We used linear mixed models to identify

sets of genes with excessive influence on the heritability of BMI

[13,36].

Results

Initially, we performed whole-genome pathway analysis using

Interval Based Enrichment Analysis (INRICH) to identify

pathways that were significantly enriched for SNP associations in

the GIANT discovery set. The first stage in INRICH analysis

generates interval data based on patterns of linkage disequilibrium

to construct independent regions of association. We used HapMap

Phase 2 European-American as a reference panel for patterns of

linkage-disequilibrium (LD), the same reference GIANT used to

perform imputation on the original data [37]. Next, we used

INRICH to identify pathways that contained an excess of

associations at four commonly used thresholds for SNP associa-

tions: the top 0.5%, 1.0%, 5.0%, and 10.0% of SNP associations

[24,25,33]. Only SNPs surpassing these thresholds were included

in determining whether pathways were enriched with ‘significant’

SNPs. The threshold values selected were purposefully liberal

compared to typical genome-wide thresholds, which allowed us to

detect the influence of pathways in which several genes show

moderate associations, rather than a small number of genes with

large effects that are better detected using more stringent

thresholds [25,33,38].

At SNP a thresholds of 10.0%, 5%, 1%, and 0.5%, we

identified 85, 51, 35, and 20 nominally significant pathways

respectively (Table S1–S4) in the GIANT discovery set. The

nominal p-value returned by INRICH indicates the probability of

observing the amount of overlap that exists between BMI

associated intervals and a given pathway gene set under the null

hypothesis of no true enrichment for associations, not correcting

for multiple testing [24]. Based on a type-I error rate of 0.05 and

Table 1. Pathways with significant enrichment for associations of the top 25% of SNP associations detected by GIANT Consortium.

Database Pathway
Nominal GSEA
p-value FDR q-value

Genes within 300 kb from
confirmed BMI SNPs

Panther PDGF SIGNALING PATHWAY 0.0008 0.0061 SPDEF

Panther, BP PROTEIN PHOSPHORYLATION 0.0001 0.0453 DMPK; PRKD1; MAP2K5; COL4A38P;
PACSIN1; TNNI3K; STK33; FLJ40125

Panther, MF HOMEOBOX TRANSCRIPTION FACTOR 0.0001 0.0110 MEIS3; IRX3; SIX5

Panther, MF TRANSLATION ELONGATION FACTOR 0.0008 0.0066 TUFM

Gene Ontology, BP NEUROGENESIS 0.0001 0.0214 NRXN3; RACGAP1

Gene Ontology, BP NEURON DIFFERENTIATION 0.0001 0.0324 NRXN3

Gene Ontology, BP GENERATION OF NEURONS 0.0002 0.0335 NRXN3; RACGAP1

Gene Ontology, BP REGULATION OF CULLULAR
METABOLIC PROCESS

0.0002 0.0308 ERCC1; FOSB; GRLF1; HMGA1; SMARCD1;
MTIF3

Gene Ontology, MF HORMONE RECEPTOR BINDING 0.0002 0.0082 HMGA1

Gene Ontology, MF NUCLEAR HORMONE RECEPTOR BINDING 0.0005 0.0085 HMGA1

Pathway databases include Panther, Panther Biological Processes (BP), Panther Molecular Function (MF), Gene Ontology Biological Processes (BP), and Gene Ontology
Molecular Function (MF).
doi:10.1371/journal.pone.0078546.t001

Pathway Analysis of BMI on 132,497 Individuals
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assuming independence between pathways (see below), the

expected number of nominally significant pathway associations

under the null hypothesis was 27, 27, 23, and 15, of the 535, 533,

465, and 304 pathways examined, demonstrating an excess of

pathways with significant enrichment beyond what was expected

by chance at more liberal SNP inclusion thresholds (exact

binomial test p-values of ,2.2e-16, 1.44e-5, .018, and.23

respectively). These exact binomial p-values should be treated

with caution because they do not account for the dependencies

among pathways, but they are consistent with the idea that (a)

BMI is influenced by the cumulative effect of a large number of

small-effect SNPs that act within pathways and (b) analyses

designed to detect the effects of a more modest number of larger-

effect SNPs (e.g., using a.005 SNP a threshold or using only

genome-wide significant SNPs) are likely to miss many truly

associated pathways.

To winnow down the 191 nominally significant pathways

identified in the GIANT discovery set to a smaller number of more

robustly associated pathways, we used an independent replication

set of 8,632 individuals to validate only those pathways detected as

nominally significant in the initial analysis. In total, 47 of these

pathways replicated as nominally significant (p,0.05) of the 191

examined: 23 of 85 at the 10% SNP threshold, 16 of 51 at the 5%

SNP threshold, 5 of 35 at 1% SNP threshold, and 3 of 20 and

0.5% SNP threshold (Tables S5–S8). The number of nominally

significant pathways were significantly higher than expected under

the null hypothesis (exact binomial test p-values for the four

thresholds were 1.98e-11, 2.03e-9, .029, and .076 respectively). As

above, the exact binomial test p-values do not account for

dependencies among pathways and so are overly liberal, but they

again suggest that SNP effects in biologically relevant pathways are

likely to be individually minor and highly distributed.

To determine which of the 47 pathways that replicated (p,.05)

in the replication sample were significant after accounting for

multiple testing, dependencies between pathways, and character-

istics (e.g., numbers of genes) of each pathway, we used the

permutation approach employed in INRICH. INRICH compares

the observed nominal p-values of pathways to a null distribution

composed of the minimum nominal p-value observed across the

47 examined pathways from each iteration of a permutation [24].

Of the 47 pathways that were nominally significant in both the

replication and discovery sets, six pathways were significantly

associated with BMI after correcting for multiple testing and

pathway dependencies (see Table 2). Three of the six significant

pathways did not contain genes that were investigated during the

candidate pathway analysis performed by the GIANT Consortium

and are novel pathway associations (Table S9 & Supplementary

Table 5 of [39]). Specifically, the Reactome regulation of ornithine

decarboxylase pathway (corrected p=0.038), and the Reactome

stabilization of P53 pathway (corrected p=0.048), were signifi-

cantly enriched for associations from the top 5% of SNPs and were

not previously associated with BMI. The KEGG Lysosome

pathway was enriched for associations from both the top 1%

(corrected p=0.016), and the top 0.5% of SNPs (corrected

p=0.043), which shows this pathway contained an excess of loci

with relatively large effects that were distributed across the top

0.5% and top 1% of SNP associations. Of the pathways that did

contain genes examined in previous studies, the KEGG Toll-like

receptor-signaling pathway (corrected p=0.049), and the KEGG

Fc epsilon RI signaling pathway (corrected p=0.025) were

identified as enriched for associations from the top 10% of SNPs,

enrichment at this threshold in combination with lack of significant

enrichment at more stringent thresholds indicates these pathways

contained an excess of loci with relatively small effects. The Signal

Transduction KE ERK1/ERK2 MAPK pathway (corrected

p=0.041) was enriched for associations from the top 5% of SNPs,

demonstrating enrichment for loci with relatively moderate effects

compared to the other thresholds examined. Regional association

plots for intervals in all significant pathways are presented in

Figures S1–S7.

We investigated the overlap of genes between these six

significantly associated pathways too better understand their

inter-relationships. Two non-overlapping groups of pathways

(pathways that do not share common genes) emerged. Details on

the overlap at the gene level between significant pathways are

provided in Table 3. In the first set, the KEGG Fc epsilon RI

signaling pathway, the KEGG Toll-like receptor-signaling path-

way, and the Signal Transduction KE ERK1/ERK2 MAPK

pathways all shared a large number of genes, while the KEGG

Lysosome pathway shared a single gene with the KEGG Toll-like

receptor-signaling pathway. The second group of pathways

included the Reactome stabilization of P53 pathway, and the

Reactome regulation of ornithine decarboxylase pathway.

After investigating the degree of gene overlap between

significant pathways, we used STRING 9.0 (Search Tool for the

Retrieval of Interacting Genes) to examine previously identified

protein-protein interactions among genes that were shared across

significant pathways [32]. We input a list of all genes that were

located in more than one of the six pathways into STRING 9.0

then computed clusters based on previously identified protein-

protein interactions listed in PubMed and OMIM, and mapped

them to each of the listed genes. Two clusters of functionally

related genes emerged, demonstrating relatively independent

biological effects of the two sets of genes. The clusters were highly

concordant with the gene overlap we identified between pathways,

as well as the division between novel pathways identified in this

analysis and the pathways identified in the candidate pathway

analysis performed by the GIANT Consortium (Figure 1).

We used the GCTA software package to estimate SNP based

heritability using linear mixed models in order to determine if

SNPs within the examined pathways explained a disproportionate

amount of the heritability for BMI [40]. We first generated a

genetic relationship matrix between all individuals in the sample

using the SNPs located within genes from all 535 examined

pathways. We then generated a separate genetic relationship

matrix using the remaining SNPs in the genome. GCTA

partitioned how much variation in BMI was explained by SNPs

inside and outside of pathways by examining the relationship

between pairwise genetic and phenotypic similarity by fitting both

genetic relationship matrices simultaneously using restricted

maximum likelihood (REML) estimation maximization algorithm.

We found that SNPs within all examined pathways explained

3.35% of BMI heritability (s.e. = 1.68%, p= 0.047), which is

equivalent to 19.76% of the total variance explained by common

SNPs. This percentage (19.76%) was greater than the proportion

of the genome represented in these pathways (13.06%), but this

difference was not significant, which is not surprising given the

large standard errors of the estimate (19.76% vs. 13.06%,

s.e. = 9.13%, p= 0.463) (Table 4).

Discussion

Six pathways contained significant enrichment for associations

with BMI after correcting for multiple testing. Three of these

pathways did not contain genes located near previously associated

loci. Two non-overlapping gene-sets emerged when we compared

which genes were contained within the six significant pathways.

Gene clusters based on identified protein-protein interactions

Pathway Analysis of BMI on 132,497 Individuals
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listed in PubMed and OMIM suggested that the genes within the

significant pathways fit into two sets of relatively independent

biological effects. These two sets were highly concordant with the

groups of genes shared between the six significant pathways, as

well as the division between pathways containing loci that were

previously associated with BMI and the novel pathway associa-

tions identified in this analysis (Figure 1, Table 2).

We identified novel associations between the Reactome

regulation of ornithine decarboxylase pathway, and the Reactome

stabilization of P53 pathway with BMI. Recent studies have found

a relationship between the P53 tumor suppressor protein and

adipogenic differentiation between white and brown fat cells, and

has been directly implicated in protection against diet-induced

obesity in both mice and humans [41,42]. White adipose tissue

plays a significant role in energy storage and regulation of energy

balance, while brown adipose tissue’s principal function is

generation of heat by fat burning [43,44]. Results from several

studies indicate that there is an inverse relationship between brown

adipose tissue activity and obesity [45–47]. Also, the polyamine

products of the ornithine decarboxylase pathway are associated

with increased cell growth and reduced apoptosis [48].

Our results also provide support for the GIANT consortium‘s

finding that pathways containing genes near significant loci are

more likely to contain other loci with greater effects than is

expected by chance. Pathways that were part the second protein-

protein interaction cluster, which contained genes previously

associated with BMI, demonstrated the positive relationship

between functional clustering, increased enrichment for novel

associations, and previously detected significant loci. Specifically,

The KEGG Toll-like receptor-signaling pathway and the Signal

Transduction KE ERK1/ERK2 MAPK pathway shared seven

genes, including the gene NFKB1. SNPs near NFKB1 were

previously associated with BMI, and we found it was one of the

most highly connected genes in the protein-protein interaction

cluster [32]. Genes from the KEGG lysosome pathway shared

functional relationships with several of the pathways that

contained previously implicated loci, even though the pathway

itself did not contain any, and only shared a single gene with the

KEGG toll-like receptor-signaling pathway. The KEGG Toll-like

receptor-signaling pathway shared the gene CTSK with the

KEGG lysosome pathway. While CTSK did not contain

previously identified SNPs associated with BMI, studies have

demonstrated up regulation of this gene in the white adipose tissue

of overweight/obese subjects and have found that up-regulation

has a significant positive correlation with BMI [49].

Some limitations should be noted when interpreting our results.

First, although our analysis indicates statistically enriched associ-

ation of SNPs within multiple pathways, and determined that

SNPs within the examined pathways explained a significant

proportion of the heritability for BMI, we were unable to

determine the contribution of individual pathway gene-sets to

BMI heritability, or whether specific gene-sets explained a greater

than expected proportion of the heritability due to lack of power.

Future studies may be able to increase power by applying a

Table 2. Pathways with significant enrichment for associations in the replication set after correcting for multiple testing.

Database Pathway
Min. nominal
p-value

Significantly
enriched
thresholds

Corrected
p-value

Number of
genes

Genes within 300 kb from
confirmed BMI SNPs

KEGG Fc epsilon RI signaling
pathway

0.0005 Top 10% 0.025 79 LAT

KEGG * Lysosome pathway 0.0051 Top 0.5%, Top 1% 0.0437 121

KEGG Toll-like receptor-signaling
pathway

0.0024 Top 10% 0.0499 102 NFKB1

Reactome * Regulation of ornithine
decarboxylase pathway

0.0024 Top 5% 0.0383 49

Reactome * Stabilization of P53
pathway

0.0027 Top 5% 0.0481 45

Signal
Transduction KE

ERK1/ERK2 MAPK 0.0026 Top 5% 0.0413 32 NFKB1

Pathways with novel detected enrichment have a * next to the name and contain no genes listed in the far right column.
doi:10.1371/journal.pone.0078546.t002

Table 3. Genes shared by significant pathways.

Pathway Genes Overlap 1 2 3 4 5 6

(1) KEGG Fc epsilon RI signaling pathway 79 0.00% 30.90% 0.00% 0.00% 12.60%

(2) KEGG Lysosome pathway 0 121 0.90% 0.00% 0.00% 0.00%

(3) KEGG Toll-like receptor-signaling pathway 28 1 102 0.00% 0.00% 10.45%

(4) Reactome regulation of ornithine decarboxylase pathway 0 0 0 49 82.90% 0.00%

(5) Reactome stabilization of P53 pathway 0 0 0 39 45 0.00%

(6) Signal Transduction ERK1/ERK2 MAPK 7 0 7 0 0 32

Total number of genes in each pathway is presented on the diagonal, percentages of overlap are presented in top right half, and number of genes shared is presented
in bottom left half.
doi:10.1371/journal.pone.0078546.t003

Pathway Analysis of BMI on 132,497 Individuals

PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e78546



method recently developed by Jian Yang et al. that estimates the

combined effect of multiple SNPs on the heritability of a trait using

only summary statistics [50]. A second limitation of our analysis is

due pathway and protein-protein interaction annotation being

incomplete. Several thousand genes are not yet included in any

pathway annotation databases; this results in all non-annotated

genes being automatically excluded from analysis. Our analysis of

identified protein-protein interactions was dependent upon inter-

actions listed in PubMed and OMIM. Due to current limits in

knowledge of human genes and their regulation the information in

Figure 1. Plot generated using STRING 9.0 (Search Tool for the Retrieval of Interacting Genes). Previously identified protein-protein
interactions among genes that are shared across significant pathways. Black edges represent interactions; line thickness is a function of number of
previously identified interactions.
doi:10.1371/journal.pone.0078546.g001

Pathway Analysis of BMI on 132,497 Individuals
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any database is far from complete. Additionally, while our results

provide compelling evidence for the polygenic structure of the

genetic architecture underlying BMI, they do not pinpoint the

exact loci where risk variants reside within the genome. The use of

pathway analysis, as well as linear mixed models to perform SNP-

set based analysis results in not knowing the exact locations of the

individual SNPs underlying significant effects [28,51].

In summary, we examined summary statistics from a meta-

analysis of 123,865 subjects performed by the GIANT Consor-

tium, and a sample of 8,632 subjects to assess independent

replication of pathways identified as having significant enrichment

of association. Six pathways contained significant enrichment for

associations with BMI after correcting for multiple testing. The

Reactome regulation of ornithine decarboxylase pathway, the

KEGG lysosome pathway, and the Reactome stabilization of P53

pathway are novel pathway associations with physiological effects

that are relevant to BMI. These results demonstrate that whole-

genome pathway analysis can detect significantly enriched

pathways that do not contain specific candidate genes or

individually significant SNPs. Our results also provide further

evidence for the highly polygenic structure of BMI, and identify

the relative contribution of SNPs within pathway gene-sets to BMI

heritability. We demonstrate how network-based approaches that

combine the results of pathway analysis with protein-protein

interaction information can be used to gain a better understanding

of the biological connections that influence BMI. Intriguingly, we

show significant convergence of key genes and biological functions

being broadly involved in regulation of growth and metabolism

through the application of different methods of genetic analysis.

This may be of significant diagnostic and therapeutic importance.

More conclusive interpretation of individual loci will require more

focused regional analysis, such as sequencing. For further

investigation of these pathways in independent datasets, we

propose testing a model that includes investigation of the effects

of rare-variants and other genetic models (e.g. epistasis, recessive

effects). In combination with targeted DNA sequencing studies,

this may reveal the impact of discrete molecular pathways on risk

for many forms of pathology, including obesity, multiple forms of

cancer, cardiovascular disease, and other serious health problems.

Further functional work is required in particular to investigate the

role of adipogenic differentiation between white and brown fat

cells, up regulation of white fat cells, and increased cell growth/

decreased apoptosis, given the growing convergence across studies

of metabolic regulation on these mechanisms.

Methods

Summary Statistics of Meta-analysis Data
The discovery set in our analysis was composed of publicly

available summary statistics from a meta-analysis of 46 GWAS of

BMI performed by the GIANT Consortium, a total sample of

123,865 individuals of European ancestry (http://www.

broadinstitute.org/collaboration/giant/index.php/

GIANT_consortium_data_files) [8]. Imputation was originally

performed on all included datasets for ,2.8 million SNPs using

HapMap Phase 2 European-American as a reference panel [37].

We removed SNPs with recorded sample sizes .2 s.d. from the

mean (number of samples from meta-analysis that were genotyped

at a given SNP), and also excluded SNPs with MAF ,0.01. We

then extracted the 463,139 SNPs that were common to both the

discovery set and post QC replication set to minimize any

differences between discovery and replication data.

Replication Subjects and Phenotype Information
The replication set in this study was derived from all publicly

available SNP data that measured BMI and that was not included

in the discovery sample: the NHLBI Multi-Ethnic Study of

Atherosclerosis (MESA) SNP Health Association Resource

(SHARe), the GENEVA Genes and Environment Initiatives in

Type 2 Diabetes (Nurses’ Health Study/Health Professionals

Follow-up Study), and the Coronary Artery Risk Development in

Young Adults (CARDIA) Study – Gene Environment Association

Studies Initiative (GENEVA), as available through NCBI’s

database of Genotypes and Phenotypes (dbGaP). Information on

genotypes (Affymetrix 6.0), phenotypes, and environmental

variables from 8,632 individuals was used from across all three

studies (population trait statistics are available in Table S11). We

selected these studies because they all had BMI phenotype

information, were also genotyped on the Affymetrix 6.0 platform,

and were not included in the previous analysis performed by the

GIANT Consortium.

The MESA study is a prospective population-based study of the

characteristics of subclinical cardiovascular disease (disease

detected non-invasively before it has produced clinical signs and

symptoms) and the risk factors that predict progression to overt

cardiovascular disease [52]. The sample is composed of 6,814 men

and women aged 45–84 who were asymptomatic for cardiovas-

cular disease, drawn from 6 field centers across the United States

(Wake Forest University, Columbia University, Johns Hopkins

University, University of Minnesota, Northwestern University and

University of California - Los Angeles). BMI measurements were

recorded, along with other clinically relevant information. Blood

Table 4. Partitioned heritability estimates.

Sample Variance Explained Total Variance Heritability Heritability s.e. P-value Size (BP) Percent of Genome

All Pathways 0.76 22.80 3.35% 1.69% 0.05 376226374 13.06%

Top 10% pathways 0.22 22.81 0.96% 0.87% 0.27 99482480 3.45%

Top 5% Pathways 0.30 22.81 1.31% 0.85% 0.12 94798221 3.29%

Top 1% Pathways 0.06 22.81 0.28% 0.73% 0.70 82971589 2.88%

Top 0.5% Pathways ,0.01 22.80 ,0.01% 0.52% .0.99 38151603 1.32%

Not in Pathways 3.10 22.81 13.58% 3.46% 0.00 2504806912 86.94%

Total SNPs 3.86 22.81 16.93% 3.61% 0.00 2881033286 100.00%

Heritability estimates and proportion of genome represented in 1.) all pathways, 2.) significant pathways at each enrichment threshold, 3.) outside of pathways, 4.) total
SNPs in genome, 5.) genes located within 300 KB of 32 confirmed BMI SNPs.
doi:10.1371/journal.pone.0078546.t004

Pathway Analysis of BMI on 132,497 Individuals
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for DNA extraction was drawn and participants consented to

genetic testing. After taking into account availability of adequate

amounts of high quality DNA, appropriate informed consent and

genotyping quality control procedures, genotype data was

available for 1,991 individuals of European ancestry.

The GENEVA Type 2 Diabetes (NHS and HPFS studies) are

prospective cohort studies of type 2 diabetes, body mass index, and

several related phenotypes in 121,700 female registered nurses

between the ages of 30–55 years at baseline in 1976, and 51,529

male health professionals between the ages of 40–75 years at

baseline in 1986 respectively [53,54]. BMI measurements were

recorded, along with other clinically relevant information every

two years. Blood for DNA extraction was drawn from 6016

subjects between 1989 and 1995 and participants consented to

genetic testing in 2007–2008. After taking into account availability

of adequate amounts of high quality DNA, appropriate informed

consent and genotyping quality control procedures, genotype data

was available for 5,445 individuals of European ancestry.

The CARDIA study is a prospective, multi-center investigation

of the natural history and etiology of cardiovascular disease

between the ages of 18 to 30 at the time of initial examination

[55]. BMI measurements from subjects were recorded, along with

other medical variables of interest. The CARDIA sample was

drawn from populations in Birmingham AL, Chicago IL, and

Minneapolis MN and, in Oakland, CA. The initial examination

included 5,115 participants selectively recruited to represent

proportionate racial, gender, age, and education groups from

each acquisition site. DNA extraction for genetic studies was

performed at the year 10 examination using blood drawn at the

baseline exam. After taking into account availability of adequate

amounts of high quality DNA, appropriate informed consent and

genotyping quality control procedures, genotype data was

available for 1,196 individuals of European ancestry.

Data Cleaning and Quality Control
The first stage of data cleaning involved using PLINK, the

whole genome association analysis toolset, in combination with R

statistical computing software, to perform quality control proce-

dures on all three samples included in the replication set separately

[56,57]. After cleaning was performed within each dataset

separately, all replication set data was merged and the same

cleaning procedures were performed again on the merged sample

to ensure the total sample met stringent quality control standards.

Subjects were excluded if genotyping rates were less than 95%.

Individuals were also excluded if the predicted sex based on X-

chromosome genotypes did not match the recorded sex. Subjects

who were outliers with respect to estimated heterozygosity, those

greater than 3 standard deviations from the mean, were excluded.

All close relatives of individual subjects, based on mean identity-

by-descent (IBD; PIHAT in PLINK) values indicating relatedness

of less than 2nd degree relatives, were excluded from the sample.

Visual inspection of Multidimensional scaling (MDS) plots was

used to remove outliers with respect to ancestry. Markers were

excluded if (1) genotyping rates were less than 95%, (2) minor

allele frequencies were less than 0.01, and (3) if p-values from the

Hardy-Weinberg Equilibrium (HWE) test were less than 161024.

We also removed individuals who had missing values for any

covariates or phenotypic data. This resulted in a total of 8,632

unrelated European ancestry individuals that met all cleaning

thresholds across all samples included in the replication set. The

physical positions of all SNPs were updated to ensure concordance

across datasets and compatibility with pathway annotation using

the hg18 assembly of the human genome. We then extracted the

463,139 SNPs that were common to both the discovery set and

each of the replication sub-sets to minimize any differences

between samples used in the analysis.

A log-transform of BMI was performed to adjust for BMI not

being normally distributed, [58,59]. To control for potential

confounds, multiple regression examined the relationship between

the log-transformed values of BMI and dataset, age, sex,

genotyping batch effects, and the first 10 principal components

to control for the effects of population stratification. The residual

for each subject was then used as the phenotype for all analyses.

Replication Set GWAS
A genome-wide association analysis was performed on all SNPs

using the residualized BMI phenotype as the target outcome.

Using the PLINK software package (v1.07) with the linear models

option, a linear regression test was performed on all quality

controlled SNP data using 8,632 individuals genotyped at 463,139

loci [56]. An additive mode of inheritance was assumed and

empirical p-values were generated for association with the

quantitative phenotype at each locus. A Manhattan plot and a

Quantile-Quantile (Q-Q) plot were used to visualize association

results (Figures S8–S9). Prior to the analysis, we adopted the

genome-wide significance threshold of p,561028 to account for

multiple testing [60].

Pathway Analysis Methods
We used Interval Based Enrichment Analysis (INRICH) to

identify pathways that were significantly enriched for SNP

associations at four commonly used cutoffs of the top 0.5%,

1.0%, 5.0%, and 10.0% of SNP associations from the 463,137

SNPs included in our analysis [11,18,24,61]. Because the choice of

an enrichment threshold is arbitrary and the optimal cutoff was

unknown, we chose a range of cutoffs [25]. The values we selected

were not highly stringent, meaning they were more likely to detect

the influence of pathways in which several genes show moderate

associations, rather than a small number of genes with large effects

that are better detected using more stringent thresholds [38]. We

focused on detecting pathways with relatively small and more

distributed effects because the influence of several associations with

large individual effects was already detected by the GIANT

Consortium [8].

Gene set annotation was downloaded from the Molecular

Signatures Data-base (MSigDB version 3.7), for 880 canonical

pathways [27]. Most pathway databases are organized in a

hierarchical structure, resulting in a high degree of overlap

between gene-sets. The MSigDB database was designed to

attenuate the problem of gene overlap between pathways by

removing gene-sets that have the same member genes with their

parent nodes and sibling nodes, maximizing the independence of

gene-sets while still maintaining much of the information about the

functional interrelationships between pathways [27,28]. Canonical

pathways are representations of biological processes compiled

from multiple databases including KEGG, GO, BioCarta, Signal

Transduction Knowledge Environment (KE), and REACTOME

[62,63]. To reduce the multiple testing burden and to avoid testing

overly broad or narrow functional categories, we only tested

pathways that contain between 20 and 200 representative genes

[64].

Analysis using INRICH involves three stages: (1) generate

interval data based on patterns of linkage disequilibrium to

construct highly independent regions of association; (2) identify

nominal enrichment using an interval-based permutation strategy;

and (3) perform a second round of permutation to correct for

multiple testing at the pathway level [24].
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A list of LD-independent associated genomic regions was

generated for the replication set using the observed SNP

associations and patterns of linkage-disequilibrium present in the

data. In the discovery set, LD-independent associated genomic

regions were identified using summary-level statistics from the

BMI meta-analysis performed by GIANT in combination with a

reference panel to estimate patterns of LD. HapMap Phase 2

European-American was used as a reference panel, the same

reference used by GIANT to perform imputation on the original

data [37]. The PLINK LD clumping option was used to generate

lists of highly independent associated genomic regions in the

discovery and replication sets at each enrichment threshold (clump-

p1 = threshold; clump-p2 = 1; clump-r2 = 0.2; clump-kb = 250). The

values selected match those from previous studies that identified

LD-independent associated regions using PLINK’s LD clumping

option when examining the same p-value cutoff thresholds that we

used [61,65]. INRICH calculated empirical enrichment statistics

for each pathway by performing 100,000 permutations. The

nominal P-value returned by INRICH indicates the probability of

observing the amount of overlap that exists between pathway gene

sets and LD-independent associated intervals under the null

hypothesis of no enrichment for associations at the specified

association threshold [24]. Gene regions were defined as 20 kb

up/downstream of the RefSeq transcription start/end sites for

17,529 autosomal genes using Human Genome Browser build

hg18 [66,67]. Next, pathway P-values were adjusted for multiple

testing using resampling based second-step permutation [24].

Gene-set Heritability Methods
The GCTA software package was used to generate all SNP

based heritability estimates using linear mixed models [40]. This

approach employs methods described in greater detail elsewhere

[40,68].

y~Xbzgze ð1Þ

Where y is a vector of phenotype values, b is a vector of fixed

effects of the overall mean, X is an incidence matrix for the fixed

effects that relates these effects to individuals, g is a vector of

random additive genetic effects based on aggregate SNP

information, and e is a vector of random error effects. Phenotype

variance estimates were estimated by the following formula:

V~As2gzIs2e ð2Þ

Additive genetic variance captured by SNPs is s2g, and error

variance is s2e, A is the genetic relationship matrix estimated using

SNPs, and I is an identity matrix. Variances were estimated using

GCTA’s restricted maximum likelihood (REML) option, and then

converted to heritability estimates [69].

We determine if gene-sets were enriched for their relative

contribution to the heritability of BMI by examining if a greater

proportion of the heritability was explained than expected based

on the proportion of the genome represented [13,70]. The

binomial Z statistic method for comparing two proportions based

on normal approximation was used to assess the degree of

deviation [71–73].
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