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Abstract

Motivation: Computer simulations are excellent tools for understanding the evolutionary and genetic
consequences of complex processes that cannot be analytically predicted and for creating realistic genetic
data. There are many software packages that simulate genetic data, but they are typically not fast or
memory efficient enough to simulate realistic, individual-level genome-wide SNP/sequence data.
Results: GeneEvolve is a user-friendly and efficient population genetics simulator that handles complex
evolutionary and life history scenarios and generates individual-level phenotypes and realistic whole-
genome sequence or SNP data. GeneEvolve runs forward-in-time, which allows it to provide a wide range
of scenarios for mating systems, selection, population size and structure, migration, recombination, and
environmental effects. The software is designed to use as input data from real or previously simulated
phased haplotypes, allowing it to mimic very closely the properties of real genomic data.
Availability: GeneEvolve is freely available at https://github.com/rtahmasbi/GeneEvolve.
Contact: Rasool.Tahmasbi@Colorado.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
GeneEvolve is C++ code for simulating individual-level genome-wide
data using an object-oriented approach. Unlike coalescent (Kingman,
1982) based simulators, GeneEvolve runs forward-in-time, which allows
it to provide a wide range of scenarios for selection, population size
and structure, migration, recombination and familial effects. Coalescent
approaches are fast but they can have serious limitations when there is
a large recombination rate over the simulated genomic region, and they
have difficulty modeling many complex scenarios of interest (Davies et al.,
2007). On the other hand, leading forward-in-time simulators such as
simuPOP (Peng and Kimmel, 2005), Fregene (Chadeau-Hyam et al.,
2008), ForSim (Lambert et al., 2008), quantiNemo (Neuenschwander
et al., 2008), and SLiM (Messer, 2013) limit the size of genome and/or

population for computational efficiency. In general, the forward-in-
time simulators are slow and are not memory efficient because they
store and work with all the genotypic data in each generation; the
computational complexity of these benchmark forward-in-time simulators
is O(loci*individuals*populations*generations). In section 2, we show
how genomes and the evolutionary process can be accurately and efficiently
simulated by representing chromosomes solely as the identity and termini
of haplotypes from a base population, which the user inputs. As a result,
GeneEvolve runs in O(individuals*populations*generations), allowing
it to easily simulate whole-genome SNP or sequence data. Moreover,
this strategy allows GeneEvolve to simulate data that closely mimics
all the properties of the (potentially real) data it uses as input for the
base population. Finally, GeneEvolve can simulate multiple causes of
environmental and genetic influences across a wide range of mating,
selection, and life history scenarios, and it can track and extract the true
identity by descent information between all pairs of individuals in the
simulated population.
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2 Description

2.1 Features

Full explanation for all features and details are available in the online
documentation. Here, we provide a brief overview of the main features of
GeneEvolve .
Simulating genotypes: Given a reference panel of phased chromosomes
as input, where each chromosome is typed atL bi-allelic sites, the program
chooses mates, and each offspring chromosome is a recombination of one
of the parent’s two chromosomes, where the recombination rate is defined
in a recombination map inputted by the user. The reference chromosomes
and recombination rates can be from previously simulated genotype data
or, for more realistic simulations, from real, phased SNP/sequence datasets
and published recombination maps.

The position of each recombination is saved and we represent each
chromosome as a continuous sequences of half-open intervals that denote
the termini and identity of haplotypes from the founder population. Clearly,
working with a continuous sequence of intervals is much faster and
more memory efficient than working with real genotypes (see online
documentation, Chapter 3). Therefore, GeneEvolve can simulate very large
sequence or SNP datasets. The only difference variant density makes to
computational efficiency is in reading and writing the simulated genotypes.
Simulating phenotypes: For each individual i in biparental family f and
population p, the phenotype is simulated through

Yifp = Ai +Di + Ei + Ff + Cf + γp, (1)

whereAi is the additive genetic (or breeding) value which depends on user
inputted additive effects, aj , and the MAFs of the m causal variants (CVs)
and Di is the dominance genetic value which depends on the dominance
effects, dj , and the MAFs of the CVs. The terms Ei, Fi, Cf , and γp
are unique, familial, shared sibling (common), and population specific
environmental values, respectively (for more information, see the online
documentation). Users can also directly specify the variances of each effect
(A,D,E, etc.) in the first generation. In this case, GeneEvolve will linearly
transform the variance components such that they equal the user-inputted
values in the first generation; the variances in subsequent generations may
then evolve away from these values as a consequence of assortative mating,
selection, drift, and so forth. Finally, GeneEvolve can simulate multiple
genetically and environmentally correlated phenotypes simultaneously.
Mating system: Users can specify the correlation (which can change
across time) between phenotypes of mates. For multiple phenotypes, the
mating phenotype is a user-specified linear combination of each phenotype.
User can also choose monogamous or polygamous mating systems and can
disallow close inbreeding.
Natural selection: Users can specify the strength and type of natural
selection acting on the phenotype. For multiple phenotypes, selection acts
upon a user-specified linear combination of each phenotype.
Migration: By defining a migration matrix per generation, users can model
Wright’s Island model or arbitrarily more complex models.
Identical by descent segments: GeneEvolve output can be processed by
a supplementary program we wrote (available at the main GeneEvolve
repository) to identify the lengths and locations of identical by descent
segments shared between all pairs of individuals in the final generation.
Output formats: GeneEvolve outputs all effects per individual and per
generation (phenotype values, additive and dominant genetic values, etc.)
and individual genotypes in ".hap", PLINK and plain text file formats. It
also reports basic summary statistics for each generation.

2.2 Performance

As noted above, GeneEvolve ’s performance is not a function of number
of genetic variants because it tracks haplotype identities and termini
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Fig. 1. Comparing the simulation time in minutes for populations of size 10k with different
numbers of variants.

rather than all genetic data each generation. It can simulate populations
of size 300K with genome-wide SNPs (500K variants) in 18.7 minutes
using 2.5 gigabytes RAM per generation, and does so for genome-wide
sequence data (42M variants) in 21.3 minutes using 2.6 gigabytes RAM per
generation (Table 3.1 of supplementary – the time and memory for reading
and writing individual-level SNP/sequence data is not considered). To our
knowledge, this is not possible with other forward-in-time benchmark
softwares. The time and memory usage are also linear functions of
sample size. We compare the functionality and runtime of GeneEvolve
to several benchmark forward-in-time simulators in Tables 3.4 and 3.5 of
supplementary file and in Figure 1, respectively. None of these benchmark
software packages could simulate populations of size 100k with more than
400k variants due to the memory or time limitations, but GeneEvolve could
run in ∼ 2 hours using 6.5 Gigabyte RAM.

In order to gauge the accuracy and realism of GeneEvolve genetic data,
we also checked the MAF over generations, the effects of genetic drift on
genetic variation, LD structure and the additive variance under assortative
mating. These results are illustrated in the documentation file and show
that GeneEvolve accurately models these evolutionary processes and that
the genomic properties of the data it simulates are indistinguishable from
real data.

3 Discussion
GeneEvolve is a stand-alone and user-friendly genetic simulation program
that requires no scripting language. It allows users to simulate complex life
events and realistic whole-genome data efficiently for large populations.
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