
Letters
https://doi.org/10.1038/s41562-018-0476-3

1Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia. 2Department of Computational Biology, University 
of Lausanne, Lausanne, Switzerland. 3Department of Psychology and Neuroscience, Institute for Behavioral Genetics, University of Colorado at Boulder, 
Boulder, CO, USA. 4Mater Research, Translational Research Institute, Brisbane, Queensland, Australia. 5Analytic and Translational Genetics Unit, 
Massachusetts General Hospital, Boston, MA, USA. 6Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 
USA. 7National Bureau of Economic Research, Cambridge, MA, USA. 8Department of Economics, New York University, New York, NY, USA. 9Center for 
Experimental Social Science, New York University, New York, NY, USA. 10Center for Economic and Social Research, University of Southern California, Los 
Angeles, CA, USA. 11Department of Economics, University of Southern California, Los Angeles, CA, USA. 12Queensland Brain Institute, The University of 
Queensland, Brisbane, Queensland, Australia. 13Faculty of Veterinary and Agricultural Science, University of Melbourne, Melbourne, Victoria, Australia. 
14Biosciences Research Division, Department of Economic Development, Jobs, Transport and Resources Government of Victoria, Bundoora, Victoria, 
Australia. *e-mail: l.yengodimbou@uq.edu.au; peter.visscher@uq.edu.au

Preference for mates with similar phenotypes; that is, assor-
tative mating, is widely observed in humans1–5 and has evo-
lutionary consequences6–8. Under Fisher's classical theory6, 
assortative mating is predicted to induce a signature in the 
genome at trait-associated loci that can be detected and 
quantified. Here, we develop and apply a method to quantify 
assortative mating on a specific trait by estimating the cor-
relation (θ) between genetic predictors of the trait from single 
nucleotide polymorphisms on odd- versus even-numbered 
chromosomes. We show by theory and simulation that the 
effect of assortative mating can be quantified in the pres-
ence of population stratification. We applied this approach 
to 32 complex traits and diseases using single nucleotide 
polymorphism data from ~400,000 unrelated individuals of 
European ancestry. We found significant evidence of assorta-
tive mating for height (θ = 3.2%) and educational attainment 
(θ = 2.7%), both of which were consistent with theoretical 
predictions. Overall, our results imply that assortative mat-
ing involves multiple traits and affects the genomic architec-
ture of loci that are associated with these traits, and that the 
consequence of mate choice can be detected from a random 
sample of genomes.

Non-random mating in natural populations has short- and 
long-term evolutionary consequences. In many species, including 
humans, mate choice is often associated with phenotypic similari-
ties between mates9,10. Such phenotypic similarities have multiple 
sources (for example, social homogamy, the preference for a mate 
from the same environment, or because of primary assortment on 
certain traits observable at the time of mate choice). In humans, 
assortative mating involves multiple complex traits1–5 and can 
sometimes lead to similar susceptibility to diseases11–14. The genetic 
effects of assortative mating were first studied in the seminal articles 
of Fisher6 and Wright7. These two founding contributions, further 
complemented by Crow and Kimura8 and others15–17 set the basis 
of the theory of assortative mating on complex traits. Assortative 
mating theory predicts three main genetic consequences of a posi-
tive correlation between the phenotypes of mates in a population: 
(1) an increase in the genetic variance in the population; (2) an 

increase in the correlation between relatives; and (3) an increase 
of homozygosity (deviation from Hardy–Weinberg equilibrium 
(HWE), in particular at causal loci. These seemingly distinct con-
sequences are nonetheless explained by the same cause: directional 
correlation between trait-increasing alleles (TIAs), also referred to 
as gametic phase disequilibrium (GPD), induced both within and 
between loci (Fig. 1). Assortative mating-induced GPD implies cor-
relations between physically distant loci (between chromosomes, 
for example) and is thus distinct from local linkage disequilibrium. 
Assortative mating therefore leads to a genomic signature of trait-
associated loci that can be quantified by estimating GPD.

Previous studies18–20 have been successful at detecting GPD by 
direct quantification of increased homozygosity at ancestry-asso-
ciated loci. Beyond ancestry, such an endeavour is particularly 
challenging for polygenic traits, as theory8 predicts an increase of 
homozygosity due to assortative mating inversely proportional to 
the number M of causal variants8,21. For a highly polygenic trait 
such as height with an estimated M ~ 100,000 for common vari-
ants22, the expected increase in homozygosity would be of the order 
of ~1/2M =​ 5 ×​ 10−6 (that is, negligible; Supplementary Notes). 
Extremely large studies would therefore be required to quantify 
systematic deviation from HWE at height-associated single nucleo-
tide polymorphisms (SNPs), as shown in a recent study18 that failed 
to detect such an effect. Another study23 of ~6,800 participants 
of European ancestry reported evidence of deviation from HWE 
at height-associated loci. However, this study did not account for 
within-sample population stratification; therefore, the reported 
estimates are probably inflated. Overall, study designs using devia-
tion from HWE to quantify GPD can be successful for detecting 
ancestry-based assortative mating (ancestral endogamy) because 
the number of loci distinguishing ancestries is relatively small24, 
and ancestral endogamy is strong18, but these studies are less power-
ful for detecting trait-specific assortative mating. In contrast with 
HWE-based estimation strategies, quantifying GPD on the basis of 
pair-wise correlations between TIAs is much more tractable as the 
number of pairs of loci involved (of the order of ~M2) compensates 
for the magnitude of the expected covariance for each pair (~1/2M). 
The number of pair-wise covariance terms is much larger than the 
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number of causal loci; thus, the vast majority of the increases in 
genetic variance in a population from assortative mating are due to 
between-locus covariance (GPD) rather than within-locus covari-
ance (increased homozygosity)8,21.

GPD due to assortative mating causes individuals who carry 
TIAs at one locus to be more likely to carry TIAs at other loci than 
expected under gametic phase equilibrium. Consequently, individ-
uals with many TIAs on even chromosomes are likely to have above 
average numbers of TIAs on odd chromosomes. We quantify this 
effect by calculating genetic predictors for a trait from the SNPs on 
odd and even chromosomes and then calculating the correlation (θ) 
between these two predictors. We chose to group SNPs according 
to the parity of their chromosome numbers because it divides the 
genome into two approximately equally sized fractions. To calculate 
these predictors, we used estimates of the effect of each SNP on a 
trait from publicly available summary statistics from genome-wide 
association studies (GWASs) of large sample size. We applied these 
estimated SNP effects to individuals in a separate sample who had 
SNP genotypes available. We were able to calculate the trait predic-
tor based on odd and even chromosomes separately and estimate 
the correlation between them (that is, θ). Our method measures the 
effect on the genome due to assortative mating in previous genera-
tions, and thus does not require observed phenotypes or the use of 
mate pairs. Under the null hypothesis of random mating, the cor-
relation between alleles on different chromosomes was expected 
to be 0 as a consequence of the independent segregation of chro-
mosomes. However, population stratification can induce spurious 
correlations between alleles, even at distant loci. Intuitively, if θ is 
estimated from a mixture of two subpopulations with distinct allele 
frequencies, having TIAs more frequent in one of the subpopula-
tions (even by chance) would result in an apparent correlation 
between TIAs even when such a correlation is absent in each sub-
population (Supplementary Notes). We show through simulations 
how the effect of population stratification can be corrected with 
our method. We applied our method to estimate assortative mat-
ing-induced GPD for 32 traits and diseases in samples of unrelated 
genomes from three independent cohorts: ~350,000 participants 
of the UK Biobank (UKB), ~54,000 participants of the Genetic 
Epidemiology Research on Adult Health and Aging (GERA) cohort 
and ~8,500 participants of the US Health and Retirement Study 
(HRS). We found evidence of assortative mating for a number of 
complex traits, including height and educational attainment.

We derived (Supplementary Notes) the expected value of the 
correlation across individuals between the trait predictors from 
SNPs on odd (So) and even (Se) chromosomes as a function of the 
phenotypic correlation between mates (r), equilibrium heritability 

of the trait (heq
2 ), fraction of that heritability captured by SNPs (feq), 

sample size (n) of the reference GWAS (in which effect sizes were 
estimated using classical linear regression, one SNP at a time) and 
number of causal loci (M) contributing to the trait (which differed 
from the number of statistically associated loci). The main result is 
that for a large number of trait loci:
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where ρ = rheq
2  is the correlation between additive genetic values 

of mates expected under assortative mating17, and ρ≈ ∕ −f f (1 )0 eq  
is the fraction of heritability captured by SNPs in the base popula-
tion (Supplementary Notes). These parameters do not need to be 
known or estimated, but can be used to provide a priori expecta-
tion of θ or a posteriori rationalization. Hence, quantification of 
GPD can be directly obtained from estimates of θ using empirical 
data. For the sake of simplicity, hereafter, we refer to estimates of 
θ as estimates of GPD. Equation (1) implies that the expected cor-
relation θ between So and Se increases with n (that is, with better 
estimation of SNP effects from the reference GWAS) and feq (that 
is, with better tagging of causal variants underlying the full narrow-
sense heritability).

We derived (Supplementary Notes) that estimates of θ from the 
regression of So on Se can be inflated by population stratification, 
especially when TIAs are highly differentiated between subpopu-
lations. We performed a number of simulations (Supplementary 
Notes) to validate the impact of population stratification on our 
estimator of GPD and show how to adjust for it using genotypic 
principal components derived separately for odd and even chro-
mosomes (Supplementary Figs. 1 and 2 and Supplementary Notes). 
More specifically, Supplementary Figs. 1 and 2 show that in the 
presence of population stratification akin to that observable within 
Europe, GPD estimates can be seriously upwardly biased and that 
adjusting for at least ten principal components as covariates is effec-
tive at correcting this bias. Our simulations also revealed that cor-
recting GPD estimates using principal components calculated from 
SNPs from both odd- and even-numbered chromosomes induces 
downward biases in GPD estimates (Supplementary Figs. 1 and 2). 
We demonstrate in the Supplementary Notes (equation (2.5)) that 
such a downward bias is expected. We therefore recommend that, 
when estimating θ from the regression of So onto Se (or Se onto So), 
GPD estimates for principal components calculated from SNPs 
on even- (or odd-) numbered chromosomes only (Methods) are 
adjusted. We used this approach to quantify GPD in real data, and 
conservatively adjusted all GPD estimates for 20 principal compo-
nents to correct within-sample population stratification (Methods). 
We observed that estimates obtained from the regression of Se 
onto So are very similar to those obtained from the regression of So 
onto Se (Supplementary Fig. 3). Therefore, using one or the other 
approach has little impact on the outcome of our analyses. Also, 
given that most GPD estimates are small, all GPD estimates (cor-
relations) reported below are expressed as percentages (for example, 
3% instead of 0.03).

First, we analysed height and educational attainment—two 
reference traits with long-standing evidence of a positive correla-
tion between mates. For height, we used estimated effect sizes 
from summary statistics of the latest GWAS meta-analysis of the 
Genetic Investigation of Anthropometric Traits consortium25, of 
9,447 near-independent HapMap3 (HM3) SNPs selected using 
the linkage disequilibrium clumping algorithm implemented in 
the software PLINK26 (linkage disequilibrium squared correlation 
(r2) <​ 0.1 for SNPs <​ 1 Mb apart and association P value <​ 0.005). 
Thus, we selected these SNPs to be enriched for true association 
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Fig. 1 | Schematic of the effect of assortative mating on the correlation 
between trait-associated alleles. Each line represents a chromosome 
of an individual in the population, and each coloured bead represents an 
allele (orange, TIAs; blue, trait-decreasing alleles) at a particular locus 
on that chromosome. Under random mating, the distribution of alleles 
between odd and even chromosomes is uncorrelated (no consistent 
pattern between chromosomes). Under assortative mating, the distribution 
of alleles is correlated between the chromosomes, such that the number 
of TIAs on odd chromosomes predicts the number of TIAs on even 
chromosomes.
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with height. We estimated in UKB participants the correlation 
between height-increasing alleles on odd versus even chromosomes 
to be θheight =​ 3.0% (s.e.: 0.2%; Fig. 2) and replicated this finding 
in GERA (θheight =​ 4.1%, s.e.: 0.4%; Fig. 2) and HRS (θheight =​ 4.4%,  
s.e.: 1.1%; Fig. 2). A meta-analysis of these three estimates yielded a 
combined GPD among height-increasing alleles of 3.2% (s.e.: 0.2%; 
P =​ 6.5 ×​ 10−89). To dismiss possible biases due to cryptic sample over-
lap or residual population stratification in summary statistics from 
the Wood study25, we re-estimated θheight using summary statistics of 
a family-based GWAS that provided stringent control for popula-
tion stratification27. We therefore meta-analysed summary statistics 
from a study by Robinson et al.27 in 17,500 quasi-independent sib-
ling pairs with those from a similar analysis performed in 21,783 
quasi-independent sibling pairs identified in the UKB (Methods). 
Using effect sizes of the 9,447 selected SNPs, re-estimated in the 
combined family-based GWAS, we found consistent GPD estimates 
between UKB not including sibling pairs (θheight =​ 2.1%, s.e.: 0.2%; 
P =​ 8.4 ×​ 10−36), GERA (θheight =​ 2.1%, s.e.: 0.4%; P =​ 1.4 ×​ 10−6) and 
HRS (θheight =​ 2.5%, s.e.: 1.1%; P =​ 0.02). The meta-analysis of these 
three estimates yielded θheight =​ 2.1% (s.e.: 0.2%; P =​ 4.7 ×​ 10−42). Note 
that lower estimates (2.1 versus 3.2%) are expected here because of 
the smaller sample size (n =​ 39,283) of this family-based GWAS, as 
predicted by equation (1).

For educational attainment, we used estimated effect sizes from 
the summary statistics of a large GWAS meta-analysis of the asso-
ciation of the number of years of education (Okbay et al.28) with 
4,618 near-independent HM3 SNPs selected using the same link-
age disequilibrium clumping procedure as described above. Using 
genotypes of 238,193 UKB participants not included in the Okbay et 
al.28 study (Methods), we found that the educational attainment cor-
relation (θEA) =​ 2.9% (s.e.: 0.2%; Fig. 2) and replicated this finding in 
GERA (θEA =​ 1.8%, s.e.: 0.4%; Fig. 2). We also attempted replication 
in HRS, but the estimate we found (θEA =​ 8.9%, s.e.: 1.1%; Fig. 2) was 
probably inflated given that HRS was part of the Okbay et al.28 meta-
analysis (Supplementary Notes). We therefore only meta-analysed 

GPD estimates from UKB and GERA, and found the average cor-
relation between educational attainment-increasing alleles on odd 
versus even chromosomes to be θEA =​ 2.7% (s.e.: 0.3%; P =​ 6 ×​ 10−46; 
Fig. 2). We also re-estimated the effect sizes of the 4,618 selected 
SNPs on educational attainment, using the same within-family pro-
cedure described above. We found GPD estimates of ~0.4% (s.e.: 
0.4%) in GERA and ~0.3% (s.e.: 0.1%) in UKB participants unre-
lated to any of the 21,783 sibling pairs used to estimate effect sizes. 
The meta-analysis of these two estimates is θEA =​ 0.31% (s.e.: 0.16%; 
P =​ 0.05). As shown below, this lower estimate is expected as the 
consequence of the smaller sample size used to estimate SNP effects.

We performed a series of sensitivity analyses (Supplementary 
Notes and Supplementary Fig. 4) to assess the robustness to popu-
lation stratification of our estimates of GPD in height- and educa-
tional attainment-increasing alleles. In particular, we re-estimated 
θheight and θEA, adjusting for different numbers of principal compo-
nents (from 1 to 30), including both within-sample and projected 
principal components (that is, based on SNP loading from an exter-
nal dataset; see Methods). We also assessed the robustness of our 
estimates to alternative choices to split the genome into two equally 
sized fractions. Furthermore, we assessed the impact of using a dif-
ferent imputation accuracy threshold to select SNPs for analysis by 
re-estimating GPD using SNPs with an imputation quality score of 
>​0.95. Finally, we re-estimated standard errors using a block-jack-
knife approach (Supplementary Fig. 5). Together, these sensitivity 
analyses confirm that our GPD estimates are robust to population 
stratification and our regression-based standard errors are appro-
priate to quantify the statistical significance of our estimates.

Next, we compared GPD estimates with theoretical predictions 
of θ from equation (1). Equation (1) predicts θ from the sample 
size of the reference GWAS (n =​ 253,288 for height and 293,723 
for educational attainment), correlation between mates, equilib-
rium heritability (here, assumed to be 80 and 40% for height and 
educational attainment, respectively29), number of causal variant 
SNPs (here, assumed to be between M ~ 10,000 and M ~ 100,000 for 
both traits) and heritability captured by SNPs used to estimate θ. 
Using ~1,000 unrelated trios (two parents and one offspring) from 
UKB30, we estimated the correlations between mates for height and 
educational attainment to be 0.24 (s.e.: 0.03) and 0.35 (s.e.: 0.03), 
respectively. We estimated the SNP heritability captured by each 
set of SNPs used to estimate θ in HRS using the software GCTA31, 
resulting in estimates of = .h 27 3%height

2  (s.e.: 1.7%) and = .h 15 1%EA
2  

(s.e.: 1.3%). With these five input parameters, equation (1) predicts 
θ to be between ~3.2 and ~4.2 versus 3.2% observed for height and 
between ~1.9 and ~3.0 versus 2.7% observed for educational attain-
ment. We recall here that predictions from equation (1) depend on 
the sample size of the GWAS from which SNP effects are estimated. 
In a smaller GWAS, estimated SNP effects are less precise (that is, 
they are prone to errors); therefore, equation (1) would predict a 
smaller value of θ. Using estimated effective sample sizes of within-
family GWAS (neff =​ 39,283 for height and 15,559 for educational 
attainment; see Methods), equation (1) predicts θ to be between 
~1.3 and ~3.6 versus 2.1% observed for height and between ~0.2 
and ~1.4 versus 0.3% observed for educational attainment. Overall, 
our estimates of GPD among trait-associated alleles (θheight =​ 3.2%, 
s.e.: 0.2; θEA =​ 2.7%, s.e.: 0.3%) are therefore consistent with these 
predictions. Everything held constant, equation (1) also predicts 
that with a much larger sample size of the discovery GWAS (for 
instance, >​1,000,000 participants), θheight would be between ~4.0 
and ~4.3% and θEA between ~2.7 and ~2.9%.

We extended our primary analysis of height and educational 
attainment to detect GPD in 30 additional complex traits and dis-
eases (Supplementary Table 1) using the same strategy. Among 
these traits, we analysed bone mineral density (BMD)32 as a null 
trait given that non-significant mate correlation was previously 
reported33. As expected, we did not find significant GPD associated 
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Fig. 2 | Estimates of assortative mating-induced GPD among TIAs in 
three independent cohorts. Data are presented for UKB (n =​ 348,502), 
GERA (n =​ 53,991) and HRS (n =​ 8,552). GPD was estimated as the 
correlation between trait-specific genetic predictors from SNPs on odd 
chromosomes versus even chromosomes. BMD was selected as a trait on 
which assortative mating does not occur (negative control). Estimates are 
adjusted for 20 genotypic principal components from SNPs on either odd 
or even chromosomes to correct the effect of population stratification. The 
HRS cohort was not included in the meta-analysis of GPD estimates among 
educational attainment-increasing alleles, as HRS data were included in the 
Okbay study28. Theoretical predictions were obtained from equation (1), 
assuming the number of causal variants for each trait to be of the order of 
~100,000. Error bars represent s.e.
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with BMD (meta-analysis of UKB, GERA and HRS: θBMD =​ 0.09%, 
s.e.: 0.2%; P =​ 0.64). After Bonferroni correction applied to the 
meta-analysis of UKB, GERA and HRS (P <​ 0.05/32 ~ 1.56 ×​ 10−3), 
we did not detect significant GPD for any of these other traits. We 
believe that this observation is probably explained by a lack of statis-
tical power, in particular resulting from the smaller sizes of GWASs 
used for these traits (on average, ~73,000 participants compared 
with ~273,000 on average for height and educational attainment), or 
from smaller variance explained by SNPs (using GCTA) selected to 
calculate genetic predictors of these traits. As an example, although 
the GWAS of body mass index (BMI) used in this study is simi-
lar in size to that of height (Supplementary Table 2), our estima-
tion in HRS participants of the phenotypic variance explained by 
the 2,362 BMI-associated SNPs selected (Supplementary Table 1) 
is only ~6.2% (s.e.: 0.9%) versus ~27.3% (s.e.: 1.7%) for height. A 
much larger GWAS would therefore be required to detect any GPD 
among BMI-associated alleles using our method.

Another independent approach to quantify the genetic effect of 
assortative mating on a particular trait consists of estimating the 
correlation of genetic predictors of this trait between mates33–35. 
Compared with θ, which measures assortative mating in the paren-
tal generation, the correlation (rm) of genetic predictors between 
mates quantifies assortative mating in the current population. We 
derived (Supplementary Notes) that if the population has reached 
an equilibrium after multiple generations of assortative mating, 
rm ~ 2θ (Supplementary Notes, equation (4.20)). We quantified rm 
for all 32 traits (Supplementary Table 3) using 18,984 unrelated 
couples identified in the UKB (Methods). We found significant cor-
relations between mates for genetic predictors of height (rm =​ 5.9%, 
s.e.: 0.8%; P =​ 9.2 ×​ 10−14) and educational attainment (rm =​ 6.1%, 
s.e.: 0.9%, P =​ 7.3 ×​ 10−11). Across all traits, we estimated the regres-
sion slope of rm estimates onto θ estimates to be 1.8 (s.e.: 0.2)  
(Fig. 3), which is consistent with our derivation predicting the 
expected mate correlation of genetic predictors to be approximately 
twice the expected value of θ.

In summary, we have shown in this study that the genomic sig-
nature of assortative mating can be detected and quantified using 
SNP data in a random sample of genomes from the population, even 
in the absence of data on mate pairs. This is an important aspect 

of our method since large datasets on mate pairs are rare and may 
be absent in natural populations. We confirm the genetic basis for 
assortative mating for height and educational attainment, consistent 
with the assumption of primary assortment on these traits. We have 
shown that our estimates of GPD from real data are consistent with 
theoretical predictions made under simplifying assumptions, such 
as equal SNP effect sizes, populations at equilibrium and a number 
of common causal variants of the order of ~100,000 (Supplementary 
Notes). However, we did not detect significant GPD for the other 
traits and diseases analysed in this study. Beyond true negatives, 
such as BMD, we believe that the relatively smaller size of GWAS 
used in our inference reduced the power to detect the genetic sig-
nature of assortative mating in more traits and diseases. We can-
not therefore draw a firm conclusion from our observations on the 
importance of primary assortment (as opposed to environmental 
correlation) to the resemblance between mates for some of these 
traits, such as smoking habits36, alcohol consumption36 or sus-
ceptibility to psychiatric disorders14. Overall, our methodology is 
straightforward and can be applied to a wider variety of traits and in 
other species, provided that summaries of trait-variant associations 
are available. Assortative mating is multi-dimensional in essence as 
mate choice depends on multiple physical and behavioural traits 
that may or may not share a common genetic basis2,37. Studying the 
networks of traits and genes driving assortative mating is one of the 
challenges to meet for improving our understanding of the genetic 
consequences of assortative mating in a population. As a step in 
this direction, our method can, for example, be applied to quantify 
consequences of assortative mating on gene expression, or at any 
other molecular level, through the use of SNP predictors of these 
endogenous traits.

Our study has a number of limitations. The first is that certain 
aspects of our approach are very conservative. We have attempted to 
quantify GPD induced by assortative mating while applying strin-
gent correction for population stratification. Although such a strat-
egy is expected in theory to yield unbiased estimates, it still faces 
the difficulty of distinguishing ancestry-based assortative mating 
from assortative mating based on traits that are genetically corre-
lated with ancestry. Height is a typical example. Assortative mating 
on height occurs, but people also tend to marry within geographical 
subpopulations (countries, for example) that differ in mean height27. 
Correcting for population stratification using principal compo-
nents would consequently remove part of the signal that we want 
to detect. We have nevertheless been able to detect GPD among 
height-increasing alleles as a consequence of the large sample size 
of the discovery GWAS, strength of assortment of mates and high 
heritability of this trait. Finally, we note that correction for popu-
lation stratification using principal components may reveal addi-
tional challenges in admixed populations, although this is beyond 
the focus of our study, which was conducted in relatively homoge-
neous populations.

The second limitation relates to our strategy for SNP selection. 
We have included in our analyses SNPs using a low and arbitrary 
threshold (P <​ 0.005) on the significance of association with the 
trait. Although this strategy is not expected to bias the covariance 
between Se and So, it may increase both of their variances and thus 
potentially induce downward biases in GPD estimates. Nonetheless, 
we chose this strategy to maximize the fraction of heritability cap-
tured by SNPs, which influences the expected correlation between 
Se and So as derived in equation (1). As an example, if GPD is 
inferred using genome-wide significant SNPs from Okbay et al.28, 
which explain ~3% of the variance of educational attainment, the 
expected correlation between Se and So would only be ~0.45% under 
the assumptions made above. Such small correlation is nearly unde-
tectable in cohorts with fewer than 300,000 participants (Methods). 
Another SNP selection strategy could have been used to reach a 
better trade-off between bias and power, but this would generally 
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in alleles associated with these traits. Values on the x axis are reported in 
Supplementary Table 1 and were obtained from the meta-analysis of N =​ 
411,045 participants. Values on the y axis are reported in Supplementary 
Table 3. Theory derived in Supplementary Notes predicts a regression slope 
equal to 2. Estimated linear regression intercept and slope are 0.002 (s.e.: 
0.002) and 1.8 (s.e.: 0.23), respectively.
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require observed phenotypes to optimize genetic predictors33,34 
(find the best P value threshold or shrinkage parameter).

In conclusion, our study provides empirical quantification 
of GPD induced among trait-associated alleles—a phenomenon 
predicted by theory exactly a century ago by Fisher6. The human 
genome has a pattern of trait-associated loci that is shaped by human 
behaviour (mate choice), as well as natural selection33,38–40. The 
imprint of assortative mating on the contemporary human genome 
reflects mate choice in the 1930–1970s and in generations before 
that. Although there is much more mobility within and between 
human populations in the twenty-first century, preference for simi-
larly statured and similarly educated mates remains stable13,35, and 
we may expect to continue to see its effect in the genome. Our find-
ings have multiple implications for genetic studies. One is that they 
predict, for traits affected by assortative mating, that estimates of 
SNP effects from within-family experimental designs tend to be 
smaller than those from a population sample, even in the absence 
of population stratification (Lee et al.41). A second implication is 
that a genetic predictor generated from a population sample will 
explain less variation than expected when applied to a population 
not undergoing assortative mating. A third implication is that pre-
viously published heritability estimates using, for example, twin 
designs might be biased to the degree that assortative mating occurs 
on the trait in question42. A final health-related implication is that 
assortative mating for liability to disease is expected to increase the 
prevalence and relative risk to relatives in the population relative to 
a population under random mating. Overall, our study shows that 
assortative mating leaves a signature on the genome, and account-
ing for this effect may improve the power of GWASs and accuracy 
of genetic predictions.

Methods
Estimation of GPD from SNP data. Our inference of GPD in a given sample 
of genomes is based on the correlation θ between polygenic scores Se and So 
calculated from SNPs on even- and odd-numbered chromosomes, respectively. 
For each individual from the study population, these scores are obtained as linear 
combinations of SNP allele counts weighted by their estimated effect sizes from 
publicly available GWASs of complex traits and diseases (Supplementary Notes). 
We used publicly available summary statistics (regression coefficients for each 
tested SNP and P values) from large GWASs on 32 traits (Supplementary Table 2). 
URLs for downloading these summary statistics are given in the Supplementary 
Notes. These include GWASs on cognitive traits (educational attainment and 
intelligence quotient), anthropometric traits (height, BMI and waist-to-hip ratio), 
psychiatric disorders (attention deficit hyperactivity disorder, autism spectrum 
disorder, bipolar disorder, anxiety, major depressive disorder, post-traumatic stress 
disorder and schizophrenia), other common diseases (coronary artery disease, type 
2 diabetes, Crohn's disease and rheumatoid arthritis), blood pressure, reproductive 
traits, personality traits, alcohol and smoking, and BMD as a null trait. It is 
important that the sample of people whose genotypes were used was independent 
of the sample of people used to estimate SNP effects on each trait. Otherwise, 
large biases can be expected as shown in the Supplementary Notes. We applied 
linkage disequilibrium score regression for quality control and only kept summary 
statistics with a corresponding ratio statistic (ratio =​ (linkage disequilibrium score 
regression intercept −​ 1)/(mean chi-squared statistic over all SNPs −​ 1)) non-
significant from 0 (that is, estimate/s.e. <​ 2) or <​0.2 (Supplementary Table 2). The 
significance of the GPD estimates was assessed using P values from Wald tests, with 
the null hypothesis ‘H0: θ =​ 0’ versus the alternative ‘H1: θ ≠​ 0’.

Correction of population structure. We used genotypic principal components to 
correct for population stratification. We calculated 20 principal components from 
70,531 near-independent HM3 SNPs (35,301 on odd chromosomes and 35,230 on 
even chromosomes) selected using the linkage disequilibrium pruning algorithm 
implemented in PLINK (r2 <​ 0.1 for SNPs <​ 1 Mb apart). We denote these principal 
components as PCO for SNPs on odd chromosomes and PCE for SNPs on even 
chromosomes. When θ is estimated from the regression of Se onto So, the effect of 
population stratification is corrected by adjusting the regression for PCOs (and 
vice versa). This can be summarized using the following regression equations: 

θ= + + … +S S PCO PCOe o 1 20 or θ= + + … +S S PCE PCEo e 1 20. Since Se and So 
may not have exactly the same variance as a result of SNP sampling, we chose to 
estimate θ from the regression onto the genetic predictor with the larger variance. 
Nonetheless, we observed that estimates obtained from the regression of Se onto So 
are very similar to those obtained from the regression of So onto Se (Supplementary 
Fig. 3). In the simulation studies (Supplementary Notes) we also considered the 

case where principal components are calculated from all SNPs available (odd and 
even chromosomes), and showed that downward biases are expected in this case. 
In our simulations, principal components were calculated using R version 3.1.2, 
while in the real data, principal components were calculated using the fast PCA 
approach43 implemented in PLINK version 2.0.

Statistical power. Theory underlying statistical power to detect correlation is well 
established44. We used equation (2) derived from ref. 44 to determine the smallest 
correlation detectable with at least 1 – β =​ 80% of statistical power at a significance 
level of α =​ 5%:
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In equation (2), n represents the size of the sample used to estimate θ, and zα/2 and 
zβ are the α/2- and β-upper quantiles of the standard normal distribution (mean 0 
and variance 1). With α =​ 5% and β =​ 20%, zα/2 ~ 1.96 and zβ ~ 0.84. We can therefore 
detect GPD as small as 1.2 and 0.5% in GERA and UKB, respectively, and 0.4% for 
the meta-analysis of UKB and GERA. For the analysis of mate pairs, we can detect 
correlation as small as 1.5%.

SNP genotyping. UKB data. We used genotyped and imputed allele counts at 
16,652,994 SNPs imputed to the Haplotype Reference Consortium45 imputation 
reference panel, in 487,409 participants of the UKB30,46. We restricted our analysis 
to 1,312,100 HM3 SNPs, as HM3 SNPs were optimized to capture common genetic 
variation47. An extensive description of the data has been reported previously48. 
We restricted the analysis to participants of European ancestry and SNPs with an 
imputation quality ≥​0.3, minor allele frequency ≥​ 1% and HWE test P value >​ 10−6. 
Ancestry assignment was performed as follows. We calculated the first two 
principal components from 2,504 participants of the 1000 Genomes Project49 
with known ancestries. We then projected UKB participants onto these principal 
components using SNP loadings of each principal component. We assigned each 
individual to one of five super-populations in the 1000 Genomes data: European, 
African, East Asian, South Asian and admixed. Our algorithm calculated, 
for each participant, the probability of membership of the European super-
population conditional on their principal components coordinates. The 456,426 
participants (out of the original 487,409) who had a probability of membership 
of the European cluster >​0.9 were assigned to the European super-population. 
Next, to obtain a sample of conventionally unrelated individuals, we estimated the 
genetic relationship matrix (GRM) for individuals in the subsample of Europeans 
using GCTA31 version 1.9. We iteratively dropped one member from each pair of 
individuals whose estimated relationship coefficient exceeded 0.05, until no pairs of 
individuals with a relationship coefficient above 0.05 remained in the sample. This 
restriction resulted in a sample of 348,502 conventionally unrelated Europeans. In 
total, we included 348,502 participants and 1,124,803 SNPs in this analysis. The 
North West Multi-centre Research Ethics Committee approved the study, and all 
participants in the UKB study analysed here provided written informed consent.

GERA cohort data. We analysed 60,586 participants of the GERA cohort using 
genotype data only. Ancestry was assigned using a procedure similar to that 
described for UKB. Genotype quality control involved standard filters (exclusion 
of SNPs with a missing rate ≥​0.02, HWE test P value >​ 10−6 or minor allele count 
<​1, and removing individuals with a missing rate ≥​0.02). We imputed genotype 
data to the 1000 Genomes reference panel using the IMPUTE2 software. We used 
GCTA to estimate the GRM of all participants using HM3 SNPs (minor allele 
frequency ≥​ 0.01 and imputation INFO score ≥​ 0.3). Finally, we included in the 
analysis 53,991 unrelated (GRM <​ 0.05) European participants with genotypes at 
1,163,290 HM3 SNPs.

HRS data. We analysed 8,552 unrelated (GRM <​ 0.05) participants of the HRS 
cohort. The GRM was calculated from 1,118,526 SNPs HM3 imputed to the 1000 
Genomes reference panel using the IMPUTE2 software. Quality control of the 
SNPs and samples was similar to that described above for GERA.

SNP selection. We used the linkage disequilibrium clumping algorithm 
implemented in PLINK to identify for each trait near-independent SNPs 
(linkage disequilibrium threshold r2 <​ 0.1 for SNPs <​ 1 Mb apart, and association 
P value <​ 0.005). Linkage disequilibrium clumping was performed using genotypes 
from HRS participants. We restricted the analysis to 1,060,523 HM3 SNPs that 
passed all quality controls in the UKB, GERA and HRS datasets.

Sample overlap. The Okbay et al.28 GWAS of educational attainment,  
Sniekers et al.50 GWAS of intelligence quotient and Kemp et al.32 GWAS of BMD 
included ~150,000 participants of the UKB (first release of genotypes). To avoid bias 
due to sample overlap, analyses performed in UKB for these traits were restricted to 
238,193 unrelated participants (UKB release 2 only) who were not related to any of 
the participants included in the above studies (UKB release 1). Participants of the 
HRS cohort were included in the Okbay et al.28 study, as well as in the Day et al.51 
GWAS of the onset of menopause. For the other GWASs considered in this study, 
no sample overlap with UKB, GERA or HRS was reported.
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Sibling pairs analyses. Selection. We used 21,783 sibling pairs of European 
ancestry previously identified in the UKB30, with identity-by-descent sharing 
estimated from SNP data. We applied the within-family QFAM procedure of 
PLINK, as in Robinson et al.27, to assess the association between HM3 SNPs and 
height and educational attainment. When applied to sibling pairs, this procedure is 
equivalent to regressing the difference of height or educational attainment between 
siblings onto the difference of allele counts. These estimates are therefore robust 
to population stratification. For height, we also performed a sample size-weighted 
meta-analysis of estimates from the Robinson et al.27 study in 17,500 quasi-
independent sibling pairs, along with those obtained in the UKB, and used these 
newly estimated effect sizes to re-estimate GPD in UKB (not including any of the 
sibling pairs), GERA and HRS. In total, we used 21,783 sibling pairs for educational 
attainment and 39,283 sibling pairs for height.

Effective sample size. We defined the effective sample size (neff) of within-family 
GWAS using npairs independent sibling pairs as the sample size of a standard 
GWAS (where SNP effects are estimated from simple linear regression) such that 
the estimated SNP effects from the within-family GWAS have the same expected 
sampling variance as the estimated SNP effects from standard GWASs. This led to 
the following equation (derived in the Supplementary Notes):

= ∕ −n n r(2(1 )) (3)eff pairs pairs

In equation (3), rpairs represents the phenotypic correlation between siblings. We 
observed, between siblings identified in UKB, a correlation ~0.5 for height and 
~0.3 for educational attainment. Therefore, the corresponding effective sample 
sizes for the within-family GWAS of height and educational attainment are 39,283/
(2 ×​ (1 −​ 0.5)) =​ 39,283 and 21,283/(2 ×​ (1 −​ 0.3)) =​ 15,559.

Mate pairs analyses. First, we used 999 unique mate pairs from 1,065 trios 
composed of both parents and one child, identified among UKB participants using 
identity-by-descent sharing estimated from SNP data. Details of the software and 
algorithms used to identify these trios are given in ref. 30 To increase the power, 
we also used household sharing information to identify putative spouse pairs 
among UKB participants with European ancestry. We therefore selected 18,984 
(including 117 from the trios) sex-discordant pairs of participants, recruited 
from the same centre, who reported living with their spouse or partner in the 
same type of accommodation, at the same location (east and north coordinates 
rounded to 1 km), for the same amount of time, with the same number of people 
in the household, the same household income, the same number of smokers in the 
household, the same Townsend deprivation index and a genetic relationship <​0.05.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
We used genotypic data from the Resource for Genetic Epidemiology Research 
on Adult Health and Aging (GERA: dbGaP phs000674.v2.p2), genotypic and 
phenotypic data from the Health and Retirement Study (HRS: dbGaP phs000428.
v1.p1), and genotypic and phenotypic data from the UKB under project 12505.
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Sample size We used pre-existing data from three cohorts such the UK Biobank (UKB, N~450,000), the Health and Retirement Study (HRS, N~8000) and 
the Genetic Epidemiology Research on Adult Health and Aging (GERA, N~60,000). We used all data made available.

Data exclusions We used SNP data to infer ancestry and restricted our analyses to study participants of European ancestry in order to minimize confounding 
due to population stratification. We also only considered genetically unrelated participants using a threshold of 0.05 of the SNP-based genetic 
relationship matrix.

Replication The main analyses were performed in the UKB and replication GERA and HRS cohorts.

Randomization N/A

Blinding N/A
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Unique materials

Antibodies

Eukaryotic cell lines

Research animals

Human research participants

Human research participants
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Population characteristics Age, gender, height, educational attainment and SNP genotypes, ancestry inferred from SNP genotypes.
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	Fig. 1 Schematic of the effect of assortative mating on the correlation between trait-associated alleles.
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