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Genetic risk shared across 24 chronic pain
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Abstract \
Chronic pain conditions frequently co-occur, suggesting common risks and paths to prevention and treatment. Previous studies
have reported genetic correlations among specific groups of pain conditions and reported genetic risk for within-individual multisite
pain counts (=7). Here, we identified genetic risk for multiple distinct pain disorders across individuals using 24 chronic pain
conditions and genomic structural equation modeling (Genomic SEM). First, we ran individual genome-wide association studies
(GWASS) on all 24 conditions in the UK Biobank (N = 436,000) and estimated their pairwise genetic correlations. Then we used
these correlations to model their genetic factor structure in Genomic SEM, using both hypothesis- and data-driven exploratory
approaches. A complementary network analysis enabled us to visualize these genetic relationships in an unstructured manner.
Genomic SEM analysis revealed a general factor explaining most of the shared genetic variance across all pain conditions and a
second, more specific factor explaining genetic covariance across musculoskeletal pain conditions. Network analysis revealed a
large cluster of conditions and identified arthropathic, back, and neck pain as potential hubs for cross-condition chronic pain.
Additionally, we ran GWASs on both factors extracted in Genomic SEM and annotated them functionally. Annotation identified
pathways associated with organogenesis, metabolism, transcription, and DNA repair, with overrepresentation of strongly
associated genes exclusively in brain tissues. Cross-reference with previous GWASs showed genetic overlap with cognition, mood,
and brain structure. These results identify common genetic risks and suggest neurobiological and psychosocial mechanisms that
should be targeted to prevent and treat cross-condition chronic pain.
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1. Introduction as peripheral mechanisms.”®#%93 This understanding has led to
the introduction of chronic primary pain disease codes in version
11 of the International Classification of Diseases (ICD-11).'¢"
Nonetheless, with few exceptions,'®® pain conditions are still
classified largely based on the body site affected and either
treated in the primary care setting®' or referred to specialists by
body site (back pain to orthopedists, irritable bowel syndrome
[IBS] to gastroenterologists, etc). Unfortunately, the processes
that drive chronic pain across conditions remain insufficiently
understood, and most current treatments do not work for most

Chronic pain is a well-documented burden on the pa-
tient':2543:66.83.109 and the healthcare system.®* The costs of
pain management are driven by an incomplete understanding of
pain chronification mechanisms, which impedes effective pre-
vention and treatment. It is now widely understood that chronic
pain is complex and involves changes in brain pathways as well
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patients.®®'%” There is an urgent need for a fundamentally
different approach.

Recent work in mental health epidemiology has revealed
extensive co-occurrence across disorders, leading to identifica-
tion of common factors underlying multiple conditions. 487
Co-occurrence across pain conditions with different patholo-
gies (eg, migraine with IBS) has also been docu-
mented.5-°6:61:88:85 Fyrthermore, chronic pain conditions are
heritable (with estimates up to 45%),** and genetic risks for
pain are shared across conditions.”® Two recent genome-wide
association studies (GWASs) in the UK Biobank (UKBB)
identified genetic variants related to multisite pain.®®° These
important studies, however, focused on pain widespreadness
(quantitative 0-7°° or binarized: 1 vs 2 or more affected body
sites®?), without tracking whether genetic risks were shared
across conditions. Widespreadness may either arise from co-
occurring pain conditions or itself be a pain condition that
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affects a number of musculoskeletal bodly sites.'® Given that 5
of the 7 body sites used in both studies are musculoskeletal,
including the most prevalent site, back pain, the genetic
associations they assessed are likely driven by the genetic risk
for widespread musculoskeletal pain and may not identify
genes that cut across distinct disorders.

Here, we examine shared genetic risks across 24 distinct pain
conditions in over 400,000 individuals in the UKBB.'? We use
genomic structural equation modeling (SEM)*® to identify
common genetic factors across conditions. Genomic SEM
applies the traditional techniques of SEM, a widely used method
for latent factor modeling,®® to genetic correlations estimated
from genome-wide association statistics. Then we annotate the
factors with associated biological pathways.

Figure 1 provides a graphical overview of the study. The
specific questions we address are as follows: (1) Is there a
general, condition-agnostic genetic risk factor for chronic
pain? (2) Are there additional genetic factors underlying
subsets of pain conditions? (3) Does the genetic structure
correspond to organization of pain by symptom location or
hypothesized etiology? (4) What biological pathways and
tissues are associated with these genetic factors? Addressing
these questions may shed light on transdiagnostic causes of
chronic pain and potential targets for prevention and
treatment.

2. Methods

The main steps in the analysis included: (1) GWAS, vyielding
association effect sizes for genetic variants (single-nucleotide
polymorphisms, SNPs) with chronic pain conditions; (2) genetic
correlations, which use the GWAS association effect sizes to
estimate shared genetic risk across pain conditions; (3)
Genomic SEM to identify common factors and compare factor
models; (4) factor GWAS to identify SNPs associated with
common factors; and (5) functional annotation of factor-
associated SNPs in likeliest implicated genes, pathways, and
tissues.

PAIN®

2.1. Cohort

Participants in the UKBB were aged 40 to 69 years and were
recruited between 2006 and 2010 (UKBB data request applica-
tion 16651). The current standard in genetics is to limit analyses to
samples of homogeneous ancestral background to avoid in-
troducing confounds from population stratification.®® We ana-
lyzed data from White Europeans, identified using UKBB-
provided genomic principal components 1 to 4,2 given that no
other group had a sufficient sample size for our analyses (see
Supplementary Table S2 for descriptive statistics of South
Asians, the next highest sample size, available at http://links.
Iww.com/PAIN/B817). Analyses in different ancestral groups will
be a high priority when more data become available. Individuals
who withdrew from the study by August 2020 were removed. Up
to 435,971 people (54% female) were included in the analysis,
with sample size varying by phenotype (Table 1).

2.2. Phenotypes

The selected phenotypes were either chronic pain conditions,
such as migraine or back pain lasting longer than 3 months, or
conditions with persistent pain as a prevalent symptom, such
as osteoarthritis. We drew an initial list of 91 phenotypes from 5
UKBB categories: medical conditions (100,074), health out-
comes (713), self-reported medical conditions (1003), health
and medical history (100,036), and first occurrences (1712),
downloaded in May 2021. We were able to greatly expand the
number of pain conditions included in this study compared with
previous studies®®%"°21% pecause of the First Occurrences
dataset. This dataset gave researchers access to primary care
and death register records to supplement self-reports and ICD-
10 diagnoses that had been earlier available exclusively from
hospital intake records. This updated UKKB dataset thus had,
for the first time, more accurate case prevalences for a large
number of conditions. We recoded these conditions into binary
phenotypes (Supplementary Table S1, available at http://links.
Iww.com/PAIN/B817) and pruned them to remove those that
fell into one of the following categories: (1) heterogeneous
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Figure 1. Scheme of study methods and analyses. CFA, confirmatory factor analysis; CFl, comparative fitindex; EFA, exploratory factor analysis; FUMA, functional
mapping and annotation; Genomic SEM, genomic structural equation modeling; GWAS, genome-wide association study; LDSC, linkage-disequilibrium score

regression; UKBB, United Kingdom Biobank.
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Pain condition descriptive statistics.

Condition Full name Cases Controls Prevalence h %sxp (SE) Reported h %gyp Citations
*aCMC Arthropathy of carpometacarpal joint 1837 201,439 0.009 0.09 (0.036) NA NA
arth Arthropathies (nonspecific, incl. osteoarthritis) 80,737 157,458 0.339 0.09 (0.005) NA NA
back Back pain 119,216 132,641 0.473 0.09 (0.005) 0.11/0.12/0.076 33,69,94
chDs Chest pain/discomfort 72,156 359,415 0.167 0.08 (0.004)
chPh Chest pain during physical activity 2938 61,044 0.046 0.13 (0.032)

*Crhn Crohn’s disease 1826 201,030 0.009 0.13 (0.038) 0.47 99
crpl Carpal tunnel 11,912 424,059 0.027 0.16 (0.011) 0.02/0.01 86,110
Cwp Chronic widespread pain 6021 427,884 0.014 0.14 (0.014) 0.10 49
cyst Cystitis 15,371 189,253 0.075 0.03 (0.008)

*dbNr Diabetic neuropathy 772 435,199 0.002 0.13 (0.051) 0.11 7
enLL Enthesopathies of lower limb 7000 195,713 0.035 0.06 (0.014)

enth Enthesopathies 28,754 175,077 0141 0.06 (0.007)

“FM Fibromyalgia 2149 433,822 0.005 0.10 (0.025) 0.14 24
gast Gastritis 41,746 179,970 0.188 0.07 (0.006)

gout Gout 15,069 192,253 0.073 0.20 (0.029)

hdch Headache 40,222 345,292 0.104 0.13 (0.008) 0.21 67
hipA Hip arthrosis 17,676 193,048 0.084 0.14 (0.012)

hipP Hip pain 41,907 381,055 0.099 0.08 (0.005) 0.12 69
IBS Irritable bowel syndrome 28,419 182,876 0.134 0.07 (0.008)

kneA Knee arthrosis 31,267 184,763 0.145 0.14 (0.009)

kneP Knee pain 78,507 334,812 0.190 0.10 (0.005) 0.08 68
legP Leg pain 41,484 108,241 0.277 0.10 (0.008)

mgrn Migraine 21,586 189,874 0.102 0.12 (0.009) 0.15 37
nksh Neck/shoulder pain 72,952 329,192 0.181 0.08 (0.004) 0.11 70
0esp Oesophagitis 13,003 195,329 0.062 0.06 (0.010)

rhAt Rheumatoid arthritis 8685 198,125 0.042 0.08 (0.014)

Tplrh Polymyalgia rheumatica 2460 433,511 0.006 0.09 (0.023)

pnjt Pain in joint 12,016 423,955 0.028 0.05 (0.008)

*prst Prostatitis 3604 199,950 0.018 0.06 (0.020)

*seRA Seropositive rheumatoid arthritis 839 201,957 0.004 0.15 (0.064)

stmP Stomach pain 21,417 396,116 0.051 0.08 (0.006) 0.14 69
tulcC Ulcerative colitis 4211 199,773 0.021 0.12 (0.022)

*urCl Urinary colic 4743 198,679 0.023 0.06 (0.016)

/Psne is SNP heritability, variance in the phenotype explained by variance in genotypes (SNPs). Reported /Zsyp is provided where available.

* Phenotypes that did not have a significant h?yp in either the odd or the even autosome set.

1 Phenotypes that did not load significantly onto either the common or specific factor in the EFA-informed CFA.

CFA, confirmatory factor analysis; EFA, exploratory factor analysis.

disorders or groups of other conditions already included, such
as ‘“other diabetic polyneuropathies”; (2) branching traits
(answers to questions dependent on endorsement of a
previous question, with the exception of DF6159: “pain type(s)
experienced in last month,” which was included as the
branching question for pain experienced for more than 3
months); (3) disorders with case count <500; (4) disorders that
were not sufficiently related to genetics, with SNP heritability
(see Section 2.4.1 below) =2 SEs above zero (FPgne — 2 X SE
= 0) (see Supplementary Note, available at http://links.lww.
com/PAIN/B816). Genomic SEM models genetic covariances
and traits with low heritability cannot show significant genetic

covariance with other traits; hence, they were not included
here. This pruning left 33 heritable chronic pain conditions
(Table 1), which were further reduced to 24 during factor
analysis (see Section 2.4.2 below).

2.3. Genome-wide association study

To prepare the data for GWAS, we used Plink,'® a commonly
used, open-source toolset for genetic analyses (details in
Supplementary Note, available at http://links.lww.com/PAIN/
B816). For the next step, GWAS, we estimated associations
between each SNP and each chronic pain condition (phenotype)
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of interest using logistic regression, with the SNP variant as the
predictor and the pain condition as the outcome. For these
analyses, we used Regenie (details in Supplementary Note,
available at http://links.lww.com/PAIN/B816).

2.4. Factor analysis and structural equation model
2.4.1. Heritability and genetic correlations

We used linkage disequilibrium score regression (LDSC)
software'" to determine SNP heritability, h%sne, and to estimate
genetic correlations between every pair of pain conditions. For
heritability, LDSC uses the pattern of SNP effects to estimate
the variance in the phenotype that is attributable to all
measured SNPs in aggregate (details in Supplementary Note,
available at http://links.lww.com/PAIN/B816). Table 1 reports
the h®snp for each condition on a liability scale (Supplementary
Note, available at http://links.lww.com/PAIN/B816). For ge-
netic correlations, LDSC determines the extent to which the
pattern of genetic associations for one phenotype is correlated
with the pattern of genetic associations for another phenotype.
The resulting matrix of pairwise genetic correlations across
pairs of chronic pain conditions is in Figure 2A. These genetic
correlations provide the basis for factor analysis in Geno-
mic SEM.

2.4.2. Factor analysis and genomic structural equation
modeling

We used Genomic SEM to test for evidence of shared genetic
risk. Structural equation modeling analyses test whether a
hypothesized factor structure can adequately capture the
observed correlations across a set of observed phenotypes
(indicators). Genomic SEM applies the same method but to
genetic correlations instead of phenotypic correlations; thus, the
indicators are chronic pain conditions, but the data constitute
correlations of genetic effects on phenotypes rather than
phenotypic scores themselves. In confirmatory factor analysis
(CFA), one specifies a series of hypothesis-driven models and
compares their ability to accurately reproduce the pattern of
correlations across conditions. Each model comprises a spec-
ification of which conditions load on which factors and whether
the factors are themselves correlated. In exploratory factor
analysis (EFA), one allows for the factor loadings to be determined
in a data-driven fashion, identifying which groupings of conditions
are best supported.

Our main analysis goal was to test for common factors
without rigidly specifying groupings a priori. Thus, our main
strategy combined EFA and CFA, using EFA to select the
number of factors and their loadings and then evaluate the
goodness of fit and compare with alternative models (see below
for details). Exploratory factor analysis—confirmatory factor
analysis, evaluated in 36 and recently used in Refs. 18,23,55,
is a partially data-driven approach that captures observed
groupings in the data while still permitting structure and
inferences based on theory.

Confirmatory factor analysis can also be used to compare
alternative theories about which types of common factors best
explain observed correlations across chronic pain conditions.
Here, we compared our EFA-guided model with 2 hypothesis-
based CFA models: one based on shared genetic risks across
conditions with similar body sites (“anatomic”) and one based
on shared risk for inflammatory conditions (“etiologic”). The
anatomic model included one general factor (on which all
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disorders load) and 6 specific factors that group conditions
based on body site: cranial, gastrointestinal, joint, leg/foot,
pelvic, and torso. The etiologic model included the general
factor and a specific factor for inflammatory conditions, which
was the only putative etiology with a substantial number of
representative conditions. We discussed a variety of other
groupings, but as biological etiology is often unknown—a
central problem in pain research—we did not reach clear
consensus on additional etiological factors.

For all 3 models, the goal was to test a bifactor structure,
which consisted of a general factor with loadings for all
conditions and specific factors that are orthogonal to the
general factor and have loadings for specific subsets of
conditions. This type of model allowed us to test whether a
common genetic factor underlay all tested pain conditions
while still allowing for shared variance for particular groups of
conditions. Similar approaches have been used to model other
multidimensional constructs, including personality’” and
psychopathology.®

For the EFA portion of the EFA-CFA approach, we used the fa
function in the “psych” R package; a scree plot (Supplementary
Figure S1, available at http://links.lww.com/PAIN/B816) sug-
gested 3 factors, allowing for correlations among factors using
oblique rotation. The factor loadings were thresholded to define a
CFA model for subsequent validation in Genomic SEM. The final
model structure is shown in Figure 2C.

The use of EFA to guide model development requires validating
the model’s fit on independent data to avoid overfitting.®' For this
validation, we used a split-genome approach.®%® We developed
a model using the EFA-CFA procedure described above in odd
autosomes (1, 3, ... 21) and assessed the fit of the final CFA in
even autosomes (2, 4, ... 22). This split created 2 independent
sets, given that SNPs are not correlated across chromosomes
(Mendel’s law of independent assortment).

Using an odd—-even autosome split assumes that traits are
polygenic (many genes contribute) and that relevant genes are
distributed across autosomes, so that an estimate of genetic
correlations from odd autosomes can be replicated in even
ones. The polygenic nature of pain conditions, like other
complex traits, was evident in this dataset (Supplementary
Figure S2, available at http://links.lww.com/PAIN/B816). How-
ever, to be conservative, we excluded conditions whose genetic
associations were not heritable in both odd and even
autosomes (Supplementary Note, available at http://links.lww.
com/PAIN/B816). This validation step led to a further exclusion
of 7 conditions (arthropathy of carpometacarpal joint, diabetic
neuropathy, Crohn’s disease, fibromyalgia, prostatitis, sero-
positive rheumatoid arthritis, and urinary colitis), whose herita-
bility estimates were not significantly above 0 in at least one
holdout set (Table 2). This final exclusion left 24 pain conditions
for the validation step, which we also used in the main analysis
and in the 2 hypothesis-driven approaches for consistency and
comparability.

Models were evaluated using CFl (comparative fit index),
which quantifies the extent to which the model fits better than a
baseline model (one in which the variables are uncorrelated),
and SRMR (standardized root mean residual), which quantifies
the mean absolute difference between the observed correla-
tions and the correlations predicted by the model.*® A well-
fitting model should generally have a CFl =0.95 and an SRMR
=0.08.%° The models were additionally compared using the
Akaike information criterion (AIC), which is a goodness-of-fit
index favoring more parsimonious models (lower values
indicate better fit).>®

Copyright © 2023 by the International Association for the Study of Pain. Unauthorized reproduction of this article is prohibited.
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Figure 2. Genetic correlations, network, and Genomic SEM model. (A) Genetic correlations for 24 pain conditions estimated using LDSC implemented in Genomic
SEM. (B) Network of genetic correlations for 24 pain conditions, pruned for significance at FDR 0.01. The 19 conditions in yellow form a clique, complete subgraph.
The 3 conditions in blue have the highest betweenness centrality, shortest path between 2 other nodes. Node size corresponds to strength, magnitude-weighted
number of connections with other nodes. (C) EFA-CFA model for 24 pain conditions with residual covariances (~~) estimated for same body-site conditions (table
in top left): hip arthrosis and pain; knee arthrosis and pain; headache and migraine; chest pain at baseline and during physical activity. F1 is the general factor with
positive loadings from all conditions, and F2 is the musculoskeletal factor. All loadings shown are significant at « = 0.05. (D) Summary scores (overall measure of
interconnectedness for each pain condition) obtained using F1 loadings from EFA-CFA and network strength and betweenness centrality, vector-normalized
geometric means (y-axis). More information on all conditions are provided in Supplementary Table 1 (available at http://links.lww.com/PAIN/B817). arth, arthroses;
back, back pain; CFA, confirmatory factor analysis; CFl, comparative fit index; chDs, chest pain/discomfort; chPh, chest pain during physical activity; crpl, carpal
tunnel; CWP, chronic widespread pain; cyst, cystitis; EFA, exploratory factor analysis; enLL, enthesopathies in lower limbs; enth, enthesopathies; FDR, false
discovery rate; gast, gastritis; Genomic SEM, genomic structural equation modeling; hdch, headache; hipA, hip arthrosis; hipP, hip pain; IBS, inflammatory bowel
syndrome; kneA, knee arthrosis; kneP, knee pain; legP, leg pain; mgrn, migraine; nksh, neck/shoulder pain; oesp, oesphagitis; pnit, joint pain; rhAt, rheumatoid
arthritis; SRMR, standardized root mean squared residual; stmP, stomach pain.
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2.5. Factor genome-wide association study

Common factors may have associations with genetic variants
that are not detectable in analysis with individual conditions. To
identify the SNPs with the largest associations with common
chronic pain factors, we ran a factor GWAS in Genomic SEM
(userGWAS function; Supplementary Figure S3, available at
http://links.lww.com/PAIN/B816).

One issue to address when calculating GWAS on common
factors is whether SNPs are associated primarily with the
common factor or instead are more strongly associated with
individual conditions that contribute to it. To assess each SNP
for disproportionately strong or directionally opposing effects
on a subset of conditions, we conducted a heterogeneity Q
test*?%® and discarded SNPs with heterogeneous effects as
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Single-nucleotide polymorphism heritability in whole genome
and odd and even chromosomes.

Condition Whole genome 0dd chroms. Even chroms.
h *syp (SE) h syp (SE) h syp (SE)
*aCMC 0.09 (0.036) 0.09 (0.026) 0.00 (0.023)
arth 0.09 (0.005) 0.05 (0.004) 0.04 (0.004)
back 0.09 (0.005) 0.04 (0.003) 0.05 (0.003)
chDs 0.08 (0.004) 0.04 (0.003) 0.04 (0.002)
chPh 0.13 (0.032) 0.09 (0.025) 0.05 (0.023)
*Crhn 0.13(0.038) 0.08 (0.029) 0.05 (0.025)
crpl 0.16 (0.011) 0.07 (0.008) 0.08 (0.009)
cyst 0.03 (0.008) 0.01 (0.006) 0.02 (0.006)
*dbNr 0.13 (0.051) 0.02 (0.033) 11 (0.038)
enLL 0.06 (0.014) 0.03 (0.010) 0.03 (0.009)
enth 0.06 (0.007) 0.03 (0.005) 0.03 (0.005)
*FM 0.10 (0.025) 0.06 (0.017) 0.04 (0.019)
gast 0.07 (0.006) 0.03 (0.004) 0.04 (0.004)
CWP 0.14 (0.014) 0.07 (0.010) 0.07 (0.010)
gout 0.20 (0.029) 0.08 (0.013) 0.12 (0.024)
hdch 0.13 (0.008) 0.06 (0.004) 0.07 (0.007)
hipA 0.14 (0.012) 0.07 (0.009) 0.07 (0.008)
hipP 0.08 (0.005) 0.04 (0.003) 0.04 (0.003)
IBS 0.07 (0.008) 0.04 (0.005) 0.03 (0.004)
kneA 0.14 (0.009) 0.07 (0.005) 0.08 (0.007)
kneP 0.10 (0.005) 0.05 (0.003) 0.05 (0.003)
legP 0.10 (0.008) 0.05 (0.005) 0.05 (0.005)
mgrn 0.12 (0.009) 0.06 (0.006) 0.06 (0.007)
neck 0.08 (0.004) 0.04 (0.003) 0.04 (0.003)
0esp 0.06 (0.010) 0.03 (0.007) 0.03 (0.006)
rhAt 0.08 (0.014) 0.05 (0.010) 0.04 (0.010)
tplrh 0.09 (0.023) 0.05 (0.016) 0.03 (0.015)
pnjt 0.05 (0.008) 0.03 (0.006) 0.02 (0.005)
*prst 0.06 (0.020) 0.03 (0.014) 0.04 (0.013)
*seRA 0.15 (0.064) 0.17 (0.043) —0.02 (0.047)
stmP 0.08 (0.006) 0.04 (0.004) 0.04 (0.005)
tulcC 0.12 (0.022) 0.07 (0.016) 0.05 (0.015)
*urCl 0.06 (0.016) 0.02 (0.012) 0.03 (0.012)

/1 %up is SNP heritability, variance in the phenotype explained by variance in genotypes (SNPs).

* Phenotypes that did not have a significant /syp in either the odd or even autosome set.

1 Phenotypes that did not load significantly onto either the common or specific factor in the EFA-informed
CFA. Condition definitions are in Table 1, and details are in Supplementary Table S1, available at http://links.
Iww.com/PAIN/B817.

CFA, confirmatory factor analysis; EFA, exploratory factor analysis; SNPs, single-nucleotide polymorphisms.

well as those correlated with them (Supplementary Note,
available at http://links.lww.com/PAIN/B816).

2.5.1. Genome-wide association study annotation

Genome-wide association study vyields a list of SNPs
significantly associated with a trait. Follow-up analyses are
then needed to characterize those SNPs in genes and
pathways. Functional mapping and annotation (FUMA) of

PAIN®

GWAS'"2 is a platform developed to facilitate a number of
standard GWAS follow-up analyses. To functionally charac-
terize the genetic contributors to both individual phenotypes
and the 2 factors, we submitted all GWAS results to FUMA for
gene prioritization and functional annotation, using several
integrated databases.''® These analyses consisted of (1)
prioritizing SNPs based on their effect sizes and indepen-
dence from each other; (2) mapping significant SNPs to genes
as described below; (3) conducting a genome-wide gene-
based association analysis using FUMA-implemented
MAGMA (https://ctg.cncr.nl/software/magma) for gene anal-
ysis and gene property analyses; (4) gene set analysis for
enrichment in known biological pathways; and (5) gene
property analysis or testing for preferential expression of
associated genes with 53 Gene-Tissue Expression repository
(GTEx), version 8, tissues. We used FUMA’s default and
standard significance thresholds and parameters, including P
<5 X 10~ ®forlead SNPs (independent atr? < 0.1)and P <
0.05 for all other SNPs; r? threshold for independent
significant SNPs used for further annotations, including gene
mapping: 0.6; reference panel population = UKBB release 2b
10K European; minimum minor allele frequency = 0.01;
maximum distance between LD blocks to merge into a locus
= 250 kilobases. The r? threshold represents a squared
pairwise correlation for SNP variant alleles. The sample sizes
for the 2 factors (general and musculoskeletal) identified in the
final EFA-CFA model were 422,752 and 468,929, respec-
tively, calculated using the method described in 63. Variants
from the reference panel that were in LD with GWAS lead
SNPs were included to increase the chance of including
causal variants.

Mappings of independent significant (as defined in FUMA,
P <5xx10"%andr? < 0.6) SNPs onto genes was based on (1)
positional distance (within 10 kilobases of gene start and stop
coordinates); (2) statistical associations with transcription levels
(expression quantitative trait locus, eQTL); and (3) chromatin
interaction mapping, physical interactions with gene chromatin
states (indicative of transcriptional accessibility). Only protein-
coding genes were included, and the major histocompatibility
region was excluded from annotation. MAGMA analysis for
gene-based (vs SNP-based) associations®®> was conducted
with SNP assignment within windows of 10 kilobases of gene
start and stop coordinates, and GTEX, version 8,%° was used for
gene expression analysis in 53 tissues. Given that the highest
association statistic is not necessarily correlated with its relative
importance (see this recent publication discussing negative
selection as a mechanism for purging high-effect variants in
critical gene loci®), our approach was to prioritize genes based
on (1) an a priori association P cut-off to ensure statistical rigor;
and (2) convergent lines of evidence for functional importance,
ie, overlap in the 3 mapping approaches. In the resulting set, we
interpret our findings in their entirety, without deference to the
top association.

The gene-tissue expression analysis tested for association
between highly expressed genes in 53 GTEx tissues and GWAS
effect sizes for the same genes, which tests the relationship
between the genes highly associated with the pain factors and
highly expressed in different tissues (details in Supplementary
Note, available at http://links.lww.com/PAIN/B816). The param-
eters are summarized in Supplementary Table S3, available at
http://links.lww.com/PAIN/B817.

We used REVIGO® to assign, prune, and summarize bi-
ological pathways to the 25 genes with overlapping mappings

Copyright © 2023 by the International Association for the Study of Pain. Unauthorized reproduction of this article is prohibited.
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(details in Supplementary Note, available at http://links.lww.com/
PAIN/B816).

2.6. Network analysis

Although CFA has many strengths in permitting model compar-
ison, some groups have emphasized that relationships among
clinical conditions can have a complex causal structure that can
be characterized in terms of networks of interacting variables. '°®
We made no strong claims about the underlying causal structure
and complemented the factor-analytic models with a network-
based approach to characterize genetic relationships among
conditions in terms of multiple local causes instead of a few latent
causes. Network characterization and visualization was done in
igraph in R.2! Genetic correlations of the final 24 pain conditions
were filtered for positive significant correlations, using a threshold
of 0.01 false discovery rate-corrected, calculated with fdrtool in R.
We calculated 2 graph theoretic properties for each pain
condition: (1) strength, calculated as the number of edges
(genetic correlations with other pain conditions) weighted by their
magnitude’; and (2) betweenness centrality, the number of
shortest paths between pairs of pain conditions that go through
the pain condition in question.'® Strength identifies “hub”
conditions that are robustly genetically related to many other
conditions and may thus be prominent indicators of muilti-
disorder susceptibility. Betweenness centrality identifies “con-
nector hubs,” conditions that are genetically related to multiple
other conditions that are themselves less interrelated. “Connector
hubs” are thus key indicators of shared genetic vulnerability.
These measures may themselves be correlated, and if so,
combined into an overall index, as we did here (described below).
At the network level, we estimated the largest clique, complete
subgraph of intercorrelated pain conditions,?® which identifies a
group of genetically interrelated conditions that may together
serve as indicators of multi-disorder susceptibility.

2.7. Summary score

To summarize the evidence for which conditions are the most
consistent key indicators of multi-disorder vulnerability, we
combined results from Genomic SEM and network analysis,
obtaining an overall measure of interconnectedness for each pain
condition. Thus, we derived summary scores for all pain
conditions using general factor loadings from EFA-CFA, network
strength, and betweenness centrality, which are intercorrelated, r
= 0.935 (general factor and strength), r = 0.614 (general factor
and betweenness), r = 0.693 (strength and betweenness). We
calculated a geometric mean of these 3 measures, after vector-
normalizing them using the norm function in R.

3. Results

The work reported here is part of a project pre-registered on Open
Science Foundation (Identifying and characterizing genetic
susceptibility and its overlap with psychosocial traits, https://
osf.io/4p5el).

3.1. Univariate pain condition genome-wide association
study curation and annotation

We considered 91 potentially relevant pain phenotypes in the
UKBB and selected 24 that (1) were indicative of chronic pain
conditions, (2) had sufficient case counts (>500), and (3) were
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significantly heritable (see Methods; Table 1 and Supplementary
Table S1, available at http://links.lww.com/PAIN/B817). The
sample size available for case assessment varied by condition
and ranged from 63,982 (chest pain during physical activity) to
435,971 (several conditions). Prevalence ranged from 0.002 (772
cases, diabetic neuropathy) to 0.473 (119,216 cases, back pain).
Single-nucleotide polymorphism heritability (variance in the
phenotype explained by variance in the genotype) ranged from
0.083 (SE, 0.008) for cystitis to 0.20 (SE, 0.029) for gout.

Summaries of results from univariate GWAS are reported in
Table 1 (SNP heritabilities), in Supplementary Figures S2 and S4
(available at http://links.lww.com/PAIN/B816) for Manhattan and
quantile-quantile (QQ)-plots, and in Supplementary Table S14 for
numbers of significant SNPs and genes, available at http://links.
Iww.com/PAIN/B817.

3.2. Pain condition genetic correlations

Pairwise genetic correlations for the 24 pain conditions,
Figure 2A, show a large cluster of interconnected vertices. This
main cluster includes etiologically and anatomically diverse
conditions, such as back pain, oesophagitis, IBS, and carpal
tunnel, suggesting shared genetic susceptibility among these
disparate syndromes. Headache and migraine form a tight mini-
cluster (top left), and cystitis, hip arthrosis, enthesopathies of the
lower limb, and gout show weaker correlations, suggesting more
specific genetic risks for each of these 4 conditions.

A natural question is whether genetic correlations are
potentially inflated when estimated in individuals with comorbid
conditions. The answer is no. Conditions are primarily comorbid
because of shared genetic risks or shared environmental risks.
However, conditions with shared environmental risks would not
correlate genetically because alleles of different genes segregate
independently from each other (Mendel’s law of independent
assortment). Thus, given distinct genetic profiles for 2 conditions,
the risk alleles for one condition would not correlate with the risk
alleles for another. A similar genetic profile in many individuals with
comorbid conditions indicates a true common predisposition.

3.3. Structural equation modeling

Using 3 approaches—hypothesis-driven anatomic (1) and etiologic
(2), and largely data-driven exploratory-then-confirmatory (3) factor
analyses (EFA-CFA)—we fit a bifactor model to test the loadings of
all conditions onto a general factor, with differences in specific
factor groupings in each approach. Both the anatomic model,
based on body site (Supplementary Figure S5, CFl = 0.875 and
SRMR = 0.087), and the etiologic model, based on a grouping of
inflammatory disorders (Supplementary Figure S6, CFl = 0.905,
SRMR = 0.095, available at http://links.lww.com/PAIN/B816), had
suboptimal fit (CFI = 0.95 and SRMR = 0.08), see Methods. The
EFA-CFA model, shown in Figure 2C, produced an adequate
overall fit (CFI = 0.956, SRMR = 0.075).

All pain conditions loaded positively and significantly onto the
general factor. The specific factor had substantial positive
loadings for arthropathies (which include osteoarthritis), carpal
tunnel, enthesopathies of lower limb, other enthesopathies, hip
arthrosis, hip pain, knee arthrosis, knee pain, leg pain, pain in
joint, and rheumatoid arthritis. Given the pronounced musculo-
skeletal component among these indicators, we interpreted the
specific factor as musculoskeletal. This factor is in line with the
World Health Organization’s grouping of pain diseases of the
musculoskeletal system, which groups conditions that affect
joints, bones, muscles, the spine, and multiple body areas or
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systems."'© The EFA-CFA was superior (AIC = 4849.164) to
both the anatomic (AIC = 13,184.43) and the etiologic (AIC =
10,024.93) models. In addition, the latter models had non-
significant loadings on their specific factors (leg/foot, pelvic, and
torso for the anatomic, Supplementary Figure S5, and in-
flammatory for the etiologic, Supplementary Figure S6, suggest-
ing that shared variance for those indicators was mainly explained
by the general factor [details in the Supplementary Note, available
at http://links.lww.com/PAIN/B816]). We validated this model by
using the same approach, EFA on odd (CFl = 0.884 and SRMR =
0.123) and CFA testing on even (CFI = 0.903 and SRMR = 0.129)
autosomes (details in the Supplementary Note, available at http://
links.lww.com/PAIN/B816). These comparable metrics in the
odd/even and whole-genome datasets suggest that using EFA
and CFA on the same dataset did not result in substantial
overfitting.

3.4. Network analysis and central conditions

Network analysis provided additional evidence for substantial
genetic overlap across pain conditions with a different theoretical
model. Graph-theoretical properties of the network (Fig. 2B)
indicate shared genetic susceptibility, and node size corresponds
to strength (magnitude-weighted number of connections). There
is a complete subgraph of 19 interconnected conditions,
highlighted in yellow: arthropathies, back pain, neck/shoulder
pain, hip pain, knee pain, leg pain, chest pain (baseline and during
physical activity), rheumatoid arthritis, knee arthrosis, joint pain,
carpal tunnel, enthesopathies, widespread pain, gastritis, oeso-
phagitis, stomach pain, headache, and IBS. Consistent with the
CFA model, these conditions affect diverse body sites and span
inflammatory and noninflammatory as well as musculoskeletal
and nonmusculoskeletal forms of pain. Gout, hip arthrosis,
enthesopathies of the lower limb, cystitis, and migraine lie outside
the large cluster, but they still have >10 connections each.
Overall, the network reveals a large core of pain syndromes with
shared genetic vulnerability.

Some conditions were particularly central in the network, in
several ways. Arthropathies, back, and neck/shoulder pain had
the highest betweenness centrality (the highest number of
shortest paths between node pairs that go through the index
node), indicating that genetic associations between many
conditions share genetic vulnerability with at least 1 of these 3.

The summary score derived from the general factor, network
node strength, and betweenness centrality, Figure 2D, reflects
the highest degree of genetic overlap with other conditions. Once
again, the top highest scorers were neck/shoulder pain, back
pain, and arthropathies.

3.5. Factor genome-wide association study and annotation

After running factor GWASs, we excluded Q SNPs (see
Supplementary Note), which showed evidence of effects specific
to certain pain conditions (not through the common factors), and
conducted functional annotation of the GWAS output for each of
these factors.

3.5.1. General factor

The general factor GWAS yielded 33 genome-wide independent
significant SNPs, Supplementary Table S4 (available at http://
links.lww.com/PAIN/B817), Figure 3. Functional mapping and
annotation mapped these to a total of 241 genes, using at least 1
of 3 methods (positional, eQTL, and chromatin interactions, see
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Methods), Supplementary Table S5 (available at http://links.lww.
com/PAIN/B817): 26 by positional, 52 by eQTL, and 57 by
chromatin interaction mappings. All 3 annotations were identified
for 25 genes, highlighted in green in Supplementary Table S5,
available at http://links.lww.com/PAIN/B817.

REVIGO pathway analysis suggested that the pathways
represented by these genes cover a broad range of biological
processes, including organ development (gut, heart, muscle, and
brain), metabolism, catabolism, signaling, immunity, neuronal
development, transcription, and DNA repair (Supplementary
Table S6, available at http://links.lww.com/PAIN/B817). Func-
tional mapping and annotation gene set annotation showed a
significant enrichment for a pathway involved in learned
vocalization behavior or vocal learning (P = 8.93 x 10~%,
Bonferroni-corrected P = 0.0138). Additionally, this analysis
showed a trend towards significance in several other pathways
involved in mechanosensory behavior, several neuronal de-
velopment processes, and several biosynthesis and calcium
channel regulation processes (Supplementary Table S7, available
at http://links.lww.com/PAIN/B817). Although these pathways
did not reach corrected significance, we note them because they
are supported by previous findings®'%2¢°%¢ and may be useful
for hypothesis generation purposes. We note, additionally, that
biological pathways have roles in multiple functions, and our
results do not imply a direct link between pain and the functions,
such as vocal learning, associated with these pathways.

MAGMA-based tissue expression analysis, as implemented in
FUMA, tested for association between highly expressed genes in
53 GTEX tissues and GWAS effect sizes for the same genes
(Supplementary Note, available at http://links.lww.com/PAIN/
B816). Associations were significant only in brain tissues: cortical
regions (the cerebral cortex, dorsomedial prefrontal cortex BA9,
and anterior cingulate cortex BA24), nucleus accumbens, basal
ganglia, amygdala, hippocampus, hypothalamus, and cerebel-
lum, Figure 3D.

Additionally we used FUMA to cross-reference SNPs and
genes with other GWAS reports. Of note is the overlap in SNPs
(Supplementary Table S8, available at http://links.lww.com/
PAIN/B817), and significant enrichment for genes reported to
be associated with chronic pain conditions (back pain, Crohn
disease, IBS, and multisite chronic pain), brain structural traits,
anthropometric traits, cognition and intelligence-related pheno-
types, sleep-related phenotypes, neuroticism, and mood phe-
notypes (Supplementary Figure S7, available at http://links.Ilww.
com/PAIN/B816). Genetic overlap with nonpain conditions is
suggestive of the complexity of factors contributing to chronic
pain and suggests potential pathways of susceptibility to pain
chronification. Furthermore, colorectal cancer suppressor (DCC),
the top gene associated with the general factor, is also the top
gene reported in a recent study of chronic overlapping pain
conditions, which used pain for >3 months in different body sites
from the UKBB (head, face, neck/shoulder, back, stomach, hip,
knee, and all over the body).>? Of the 241 genes mapped to
independent significant SNPs from the general factor GWAS,
FKBP5 is the only one previously targeted in a candidate gene
study (as opposed to GWAS) for posttraumatic musculoskeletal
pain.9'59'119.

3.5.2. Musculoskeletal factor

The musculoskeletal factor GWAS vyielded 7 genome-wide
significant lead SNPs (Supplementary Table S9, available at
http://links.lww.com/PAIN/B817, and Supplementary Figure S8,
available at  http:/links.lww.com/PAIN/B816).  Positional
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Figure 3. F1 factor GWAS output. Genome-wide association study (GWAS) results for general pain factor (F1). Single-nucleotide polymorphism Manhattan (A) and
quantile-quantile, QQ (B), plots for F1 GWAS. (C) Gene-based genome-wide association Manhattan plot, with the top 31 associated genes labeled. Full gene
names taken from the NCBI gene database, https://www.ncbi.nlm.nih.gov/gene/: ARPC5L, actin-related protein 2/3 complex subunit 5-like protein; BSN,
Bassoon presynaptic cytomatrix protein; C6orf106, inflammation and lipid regulator with UBA-like and NBR1-like domains; CAMKYV, CaM kinase like vesicle
associated; CDHR4, cadherin-related family member 4; CTD-2330K9.3, Coats disease; DCC, colorectal cancer suppressor; ERBB3, Erb-B2 receptor tyrosine
kinase 3; FOXP2, forkhead box P2; GNAT1, G protein subunit alpha transducin 1; IP6K1, inositol hexakisphosphate kinase 1; IP6K3, inositol hexakisphosphate
kinase 3; LANCLT1, LanC like glutathione S-transferase 1; MAML3, mastermind like transcriptional coactivator 3; MARVELD3, MARVEL (membrane-associating)
domain containing 3; MON1A, MON1 homolog A, secretory trafficking associated; MST1, macrophage stimulating 1; MST1R, macrophage stimulating 1
receptor; NCAM1, neural cell adhesion molecule 1; RBM5, RNA-binding motif protein 5; RBM6, RNA-binding motif protein 6; RERG, RAS-like estrogen-regulated
growth inhibitor; RNF123, ring finger protein 123; ROBO2, roundabout guidance receptor 2; SAMDS, sterile alpha motif domain containing 5; SCAI, suppressor of
cancer cell invasion; SEMAS3F, semaphorin 3F; TRAIP, TRAF interacting protein; UBA7, ubiquitin-like modifier activating enzyme 7; UQCC2,
ubiquinol-cytochrome ¢ reductase complex assembly factor 2; WDR38, WD repeat domain 38. (D) Gene property analysis for association between factor
GWAS gene effects and gene expression levels in 53 specific tissues from GTEX, version 8. GTEX, gene-tissue expression.
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mapping yielded 5 unique genes; eQTL mapping yielded 18
genes; and chromatin interaction mapping yielded 19 genes, with
5 genes mapped using all 3 methods, green: DPYD, MAPKE,
GLIS3, COL27A1, and SLC44A2 (Supplementary Table S10,
available at http://links.lww.com/PAIN/B817).

REVIGO pathway analysis showed associations with genes
involved in bone and neuronal development, cell cycle, transcrip-
tion regulation, and signal transduction, Supplementary
Table S11, available at http://links.lww.com/PAIN/B817. Gene
set annotation showed a Bonferroni-corrected significant enrich-
ment for regulation of RNA biosynthetic process and nominally
significant (P < 0.05) enrichment for several other regulatory
processes, chromatin organization, cell migration involved in
heart development, and DNA damage response (Supplementary
Table S12, available at http://links.lww.com/PAIN/B817).
MAGMA tissue expression analysis found no significant associ-
ation between gene expression and GWAS effect sizes for 53
tissues (Supplementary Figure S8D, available at http://links.lww.
com/PAIN/B816).

Cross-referencing with other GWAS reports identified pre-
viously reported SNP associations with anthropometric traits
(height, hip circumference, and offspring birth weight), hip or
knee osteoarthritis, sleep-related phenotypes, and type 2
diabetes (Supplementary Table S13, available at http://links.
lww.com/PAIN/B817), and significant overlap with genes
reported to be associated with inflammatory skin disease,
palmitic, and stearic acid levels (Supplementary Figure S9,
available at http://links.lww.com/PAIN/B816). None of the
genes previously targeted in candidate gene studies for
pain'"” mapped to independent significant SNPs for the
musculoskeletal factor.

4. Discussion

We ran Genomic SEM on 24 pain conditions in the UKBB to
examine the structure of their shared genetic risk and
characterize the genetic variants common to them. Our results
identify a general factor that explains substantial genetic
variance in pain conditions with different suspected etiologies
and anatomic presentations and points to their shared
systemic pathophysiology. Additionally, a second factor
explains some of the shared genetic variance across muscu-
loskeletal conditions. The 2-factor model explains the pattern
of genetic associations among disorders better than either the
anatomic or the etiologic grouping of known inflammatory
disorders. The shared genetic burden is also apparent in our
network analyses.

We identified 184 novel targets for cross-condition chronic
pain (Supplementary Table S5, available at http://links.lww.
com/PAIN/B817). Two lines of evidence suggest that genes
associated with our general pain factor have an important role
in the central nervous system (CNS). First, the genes most
associated with the general factor for pain also have the
highest expression in brain tissues. Second, the pathways of
these genes include CNS development and maintenance. Our
study further adds to existing evidence for the role of
DCC,%287:°7 an axonal guidance mediator,'® in chronic pain.
Beyond CNS, the pathways of genes associated with the
general pain factor also implicate a broad range of other
functions, such as gut development, locomotion, and protein
secretion, suggesting that susceptibility to chronic pain may
involve other systemic biological changes. The new molecular
targets we identify can be cross-referenced with animal
models in  “reverse-translation” approaches to better

PAIN®

understand the pathophysiology of chronic pain and develop
novel treatments.

We note overlap between the genetic variants associated with
our general factor and those previously reported in GWAS for
cognitive, structural, mood, sleep, and personality traits, regula-
tion of inflammation and neuroplasticity, and psychiatric disor-
ders. This overlap underscores the highly multifaceted nature of
pain as a biopsychosocial condition while elucidating the key
genes and systems involved. 4 19:20:64.104.105 Thig pigiotropy, or
the association of genes with multiple conditions, together with
the polygenic nature of the general factor we identified,
exemplifies the frequently observed many-to-many mapping
between genes and traits.” " Identifying links between polygenic
risk profiles of different disorders can provide important in-
formation on susceptibility and treatment.

As might be expected, the genes associated with the
musculoskeletal factor are fewer, and their pathways are less
diverse. They implicate skeletal development, choline transport,
signalling, and transcription machinery. Notably, they do not
implicate the nervous system. Overlap with previous GWAS
results suggests involvement of variants affecting anthropometric
traits and thereby body-structural mechanisms. Similar associ-
ations have been shown for musculoskeletal pain conditions
before: genetic overlap in osteoarthritis with height and BMI,%”
back pain,®® and multisite musculoskeletal pain'®? with structur-
al-anatomic genes.

Our work builds on earlier genetic analyses of combinations of
pain conditions selected based on anatomic proximity or
hypothesized etiology.*26284108.113 Although most studies have
been conducted in twins, several large-scale chronic pain GWAS,
with strengths complementary to twin studies,®* have been
published on pain in the past 3 years.®368:69.71-73.96 Thggg
reports, which used earlier releases of the UKBB before primary
care data availability, include 3 on multisite pain.®%%"%2 Most
recently, another study reported a polygenic risk score for pain
spreading that was associated with a phenotypic profile
dominated by mood, sleep, and neuroticism.®”

Studies of multisite pain differ from our study in a critical way.
They may show genes associated with only one of the
constituent conditions to be associated with the average count
of pain sites (widespreadness), if that condition is present in
several combinations of comorbid pain sites. Thus, given a
genetic variant associated with hip pain and 2 three-site
combinations—hip, knee, and back pain and hip, neck, and
stomach pain—this variant will appear to be associated with a
widespreadness score of 3 without having associations with any
of the other constituent conditions in this example. Analyses of
association with multisite pain are thus not designed to identify
the genetic variants shared among multiple distinct conditions.
However, Genomic SEM is designed to identify genetic variants
that are truly common to different conditions, and it enabled us
to capture genetic risk for chronic pain, regardless of etiology or
symptomatology.

The existence of cross-condition genetic risk factors
challenges the current clinical practice of grouping and treating
chronic pain conditions based on location of symptoms on the
body or suspected etiology.?® Evidence for central processes
beyond local pathophysiology has been accumulating. Biop-
sychosocial factors, 92064104105 g roinflammation  and
neuroplasticity,®?:26:85.:83.74.77.82.103.118 = 404 neuroimaging
traits,2'4'15’44’47'54'57’58’65'76'81 ,85,89,115 have a” been reported
to modulate pain experience and chronic pain risk. This work
has culminated in a new classification system for chronic pain
in ICD-11, which shifts pain category assignment to a
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hierarchical approach: etiology, then pathophysiology, and
then body site.'® It also includes chronic primary pain as a
diagnosis “agnostic with regard to etiology.”’® These changes
are important steps toward aligning diagnosis with patho-
physiology, and genetics is an important piece of the puzzle.
Our Genomic SEM model suggests that, in addition to
condition-specific genetic susceptibility, there is a genetically
encoded pathophysiology common to different chronic pain
conditions and supports the view of chronic pain as a disorder
involving systemic pathology.’™ This study further identifies
genetic risk markers that are shared across distinct pain
conditions contributing to a new, biologically grounded way of
conceptualizing chronic pain conditions. The strong associa-
tion between expression of chronic pain risk genes in the brain
and cross-condition chronic pain provides additional evidence
that the common genetic risk markers we identified may be
associated with central sensitization and chronic primary pain,
which have both been linked to alterations in the brain and
spinal cord." 0114

4.1. Limitations

There are several notable limitations of this study. First,
although the annotated genetic associations for the general
factor suggest a combination of systemic biological and
psychological predispositions, the precise mechanisms un-
derlying these predispositions need to be elucidated in future
studies before they can be translated to clinical applications. In
service of this goal, the pathways implicated by the SNPs and
genes we have identified can be targeted in follow-up studies to
further elucidate the systemic mechanisms that lead to chronic
pain.

The second limitation lies in the reliance of annotations
obtained from FUMA on the information available in existing
data repositories, which may be restricted by insufficient
resolution or small sample sizes. Thus, although we did not
find associations with inflammatory cytokines, evidence for
their role in pain is abundant®®4°°2 and should be investigated
further.

Third, we do not expect the genetic patterns we identified to
be either selective or sufficient to explain cross-condition
chronic pain. This is because of both pleiotropy (the effects of
one gene on several different conditions) and environmental
effects, which are certain to play a large part in the development
of chronic pain.

Fourth, the genetic scores of our common factors should be
validated for association with chronic pain using either association
analysis in an independent sample. This validation would require
obtaining a polygenic score and is the aim of a follow-up study.

Fifth, given sample size limitations in the UKBB for non-
European individuals, we were not able to test our model for
generalizability across ancestral populations, which we attemp-
ted to do in the next largest sample: South Asians (Supplemen-
tary Table 2, available at http://links.lww.com/PAIN/B817).

By establishing genetic risk factors in a large sample, this study
paves the way for more detailed assessments of pain prognosis
and treatment response in targeted studies. For example, the
ongoing Acute to Chronic Pain Signatures study aims to establish
risk factors for postsurgical pain from genetic, multi-omics,
psychosocial, and neuroimaging measures in another large
sample (2800 patients; a2cps.org). Our factor scores could be
tested alongside previously identified genetic patterns for
multisite pain and compared with them as prognostic risk factors
for chronic postsurgical pain.

www. painjournalonline.com 2249

5. Conclusion

In summary, our findings confirm that there is a genetic
susceptibility common to a broad range of diverse chronic pain
conditions. The shared pathophysiology for the conditions
examined here seems to lie partly in the CNS and partly scattered
across many different systems and functional processes.
Additionally, there is a body-wide, suggestively musculoskeletal
system-specific genetic factor. Our study calls for new ways to
diagnose and treat chronic pain, whereby a given chronic pain
condition is not considered as only a symptom of a localized
somatic disease by the clinician specializing in it, but is seen as a
manifestation of an underlying shared pathology with concurrent
risk for other pain conditions and previously unexplored
centralized treatment targets. Future work will go beyond pain
conditions and explore genetic links with psychological and
physical traits to help identify patients who would benefit most
from specific interventions.
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